, Volume 24, Issue 6, pp 416–422

Recombinant congenic strains — A new tool for analyzing genetic traits determined by more than one gene

  • P. Démant
  • A. A. M. Hart


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Bailar, J. C. and Smith, E. M.: Progress against cancer? N. Engl. J. Med. 314: 1226–1232, 1986Google Scholar
  2. Bailey, D. W.: A search for genetic background influences on survival time of skin grafts from mice bearing γ-linked histoincompatibility. Transplantation 3: 531–534, 1965Google Scholar
  3. Bailey, D. W.: Recombinant-inbred strains. An aid to identify linkage and function of histocompatibility and other genes. Transplantation 11: 325–327, 1971Google Scholar
  4. Bailey, D. W.: Recombinant inbred strains and bilineal congenic strains. In H. L. Foster, J. D. Small, and J. G. Fox (eds.): The Mouse in Biomedical Research, pp. 223–239, Academic Press, New York, 1981Google Scholar
  5. Bishop, J. M.: Cellular oncogenes and retroviruses. Annu. Rev. Biochem. 52: 301–354, 1983Google Scholar
  6. Breindl, M., Harbers, K., and Jaenisch, R.: Retrovirus-induced lethal mutation in collagen I gene of mice is associated with an altered chromatin structure. Cell 38: 9–16, 1984Google Scholar
  7. Briles, D. E., Benjamin, W. H., Jr., and Posey, B.: Use of recombinant inbred mice to study the genetics of disease resistance. In E. Skamene (ed.): Genetic Control of HostResistance to Infection and Malignancy, pp. 97–99, Alan R. Liss, New York, 1985Google Scholar
  8. Briles, D. E., Benjamin, W. H., Jr., Huster, W. J., and Posey, B.: Genetic approaches to the study of disease resistance with special emphasis on the use of recombinant inbred mice. Curr. Top. Microbiol. Immunol. 124: 21–35, 1986Google Scholar
  9. Brinster, R. L., Chen, H. Y., Messing, A., van Dyke, T., Levine, A. L., and Palmiter, R. D.: Transgenic mice harboring SV40T antigen develop characteristic tumors. Cell 37: 367–379, 1984Google Scholar
  10. Cairns, J.: The treatment of diseases and the war against cancer. Sci. Am. 253: 31–39, 1985Google Scholar
  11. Dickie, M. M.: The use of F1 hybrid and backcross generations to reveal new and/or uncommon tumor types. J. Natl. Cancer Inst. 15: 791–799, 1954Google Scholar
  12. Falconer, D. S.: Quantitative inheritance. In W. J. Burdette (ed.): Methodology in Mammalian Genetics, pp. 193–216, Holden-Day, San Francisco, 1963Google Scholar
  13. Festenstein, H. and Demant, P.: HLA and H-2-Basic Immunogenetics. Edward Arnold, London, 1978Google Scholar
  14. Gehring, W. J. and Paro, R.: Isolation of a hybrid plasmid with homologous sequences to a transposing element of Drosophila melanogaster. Cell 19: 897–904, 1980Google Scholar
  15. Gilmour, D. G., Collins, W. M., Frederickson, T. L., Urban, W. E., Jr., Ward, P. F., and DiFronzo, N. L.: Genetic interaction between non-MHC T and B-cell alloantigens in response to Rous sarcomas in chickens. Immunogenetics 23: 1–6, 1986Google Scholar
  16. Gorer, P. A.: The detection of antigenic differences in mouse erythrocytes by employment of immune sera. Br. J. Exp. Pathol. 17: 42–40, 1936Google Scholar
  17. Green, S., Walter, P., Kumar, V., Krust, A., Bornert, J. M., Argos, P., and Chambon, P.: Human oestrogen receptor cDNA: Sequence, expression and homology to v-erb-A. Nature 320: 134–139, 1986Google Scholar
  18. Haldane, J. B. S. and Waddington, C. H.: Inbreeding and linkage. Genetics 16: 357–374, 1931Google Scholar
  19. Hanahan, D.: Heritable formation of pancreatic beta-cell tumors in transgenic mice expressing recombinant insulin SV40 oncogenes. Nature 315: 115–122, 1985Google Scholar
  20. Heidin, C. H. and Westermark, B.: Growth factors: Mechanism of action and relation to oncogenes. Cell 37: 9–20, 1984Google Scholar
  21. Heston, W. E.: Genetics of neoplasia. In W. J. Burdette (ed.): Methodology in Mammalian Genetics, pp. 247–268, San Francisco, Holden-Day, 1963Google Scholar
  22. Hutton, J. J.: Biochemical polymorphisms—detection, distribution, chromosomal location, and applications. In H. C. Morse (ed.): Origins of Inbred Mice, pp. 235–254, Academic Press, New York, 1978Google Scholar
  23. Jaenisch, R., Jähner, D., Nobis, P., Simon, I., Löhler, J., Harbers, K., and Grotkopp, D.: Chromosomal position and activation of retrovirus genomms inserted into the germ line of mice. Cell 24: 519–529, 1981Google Scholar
  24. Jenkins, N. A. and Copeland, N. G.: High frequency germline acquisition of ecotropic MuLV proviruses in SWR/J-RF/J hybrid mice. Cell 43: 811–819, 1985Google Scholar
  25. Jenkins, N. A., Copeland, N. G., Taylor, B. A., and Lee, B. K.: Dilute (d) coat color mutation of DBA/2J mice is associated with the site of integration of an ecotropic MuLV genome. Nature 293: 370–374, 1981Google Scholar
  26. Johnson, N. L. and Kotz, S.: Discrete Distributions, Houghton Mifflin Co., Boston, 1969Google Scholar
  27. Klein, G.: The role of gene dosage and genetic transposition in carcinogenesis. Nature 294: 313–318, 1981Google Scholar
  28. Klein, J.: Biology of the Mouse Histocompatibility-2 Complex. Springer-Verlag, Berlin, 1975Google Scholar
  29. Kouri, R. E., Salerno, R. A., and Whitmire, C. E.: Relationships between aryl hydrocarbon hydroxylase inducibility and sensitivity to chemically induced subcutaneous sarcomas in various strains. J. Natl. Cancer Inst. 50: 363–368, 1973Google Scholar
  30. Land, H., Parada, L. F., and Weinberg, R. A.: Cellular oncogenes and multistep carcinogenesis. Science 222: 771–778, 1983Google Scholar
  31. Lilly, F.: Fv-2 identification and location of a second gene governing the spleen focus response to Friend leukemia virus in mice. J. Natl. Cancer Inst. 45: 163–169, 1970Google Scholar
  32. Lilly, F., Boyse, E. A., and Old, L. J.: Genetic basis of susceptibility to viral leukemogenesis. Lancet 2: 1207–1209, 1964Google Scholar
  33. Malkinson, A. M., Nesbitt, M., and Skamene, E.: Susceptibility to urethan-induced pulmonary adenomas between A/J and C57BL/J mice: Use of AxB and BxA recombinant inbred lines indicating a three-locus genetic model. J. Natl. Cancer Inst. 75: 971–974, 1985Google Scholar
  34. Mather, K.: Historical overview: Quantitative variation and polygenic systems. In J. N. Thompson, Jr., and J. M. Thoday (eds.): Quantitative Genetic Variation, pp. 5–34, Academic Press, New York, 1979Google Scholar
  35. Messing, A., Chen, H. Y., Palmiter, R. D., and Brinster, R. L.: Peripheral neuropathias, hepatocellular carcinomas and islet cell adenomas in transgenic mice. Nature 316: 461–463, 1985Google Scholar
  36. Möller, G. (ed.): Graft versus host reaction. Immunol. Rev. 80: 1985Google Scholar
  37. Murphy, E. D.: Characteristic tumors. In E. L. Green (ed.): Biology of the Laboratory Mouse, pp. 521–570, McGraw-Hill, New York, 1966Google Scholar
  38. Myers, R. M., Lerman, L. S., and Maniatis, T.: A general method for saturation mutagenesis of cloned DNA fragments. Science 229: 242–247, 1985Google Scholar
  39. Nebert, D. W., Benedict, W. F., and Kouri, R. E.: Aromatic hydrocarbon-produced tumorigenesis and the genetic differences in aryl hydrocarbon hydroxylase induction. In J. Di Paolo and P. Tssó (eds.): World Symposium on Model Systems in Chemical Carcinogenesis, pp. 271–288, Marcel-Dekker, New York, 1974Google Scholar
  40. Palmiter, R. D. and Brinster, R. L.: Transgenic mice. Cell 41: 343–345, 1985Google Scholar
  41. Roderick, T. H. and Schlager, G.: Multiple factor inheritance. In E. L. Green (ed.): Biology of the Laboratory Mouse, pp. 151–164, McGraw-Hill, New York, 1966Google Scholar
  42. Russell, W. L., Hanicker, P. R., Raymer, G. D., Stelle, M. H., Stelzner, K. F., and Thompson, H. M.: Dose-response curve for ethylnitrosourea induced specific locus mutations in mouse spermatogonia. Proc. Natl. Acad. Sci. U.S.A. 79: 3589–3591, 1982Google Scholar
  43. Shedlovsky, A., Guenet, J. L., Johnson, L. L., and Dove, W. F.: Induction of recessive mutations in the T/tA-H-2 region of the mouse genome by a point mutagen. Genet. Res., in press, 1986Google Scholar
  44. Snell, G. D.: Histocompatibility genes of the mouse. II. Production and analysis of isogenic resistant lines. J. Natl. Cancer Inst. 21: 843–877, 1958Google Scholar
  45. Snell, G. D., Dausset, J., and Nathenson, S. G.: Histocompatibility. Academic Press, New York, 1976Google Scholar
  46. Stewart, T. A., Pattengale, P. K., and Leder, P.: Spontaneous mammary adenocarcinomas in transgenic mice that carry and express MTV/myc fusion genes. Cell 38: 627–637, 1984Google Scholar
  47. Stiles, C. D.: The biological role of oncogenes-insights from plateletderived growth factor. Cancer Res. 45: 5215–5218, 1985Google Scholar
  48. Taylor, B. A.: Recombinant inbred strains: Use in gene mapping. In H. C. Morse (ed.): Origin of Inbred Mice, pp. 423–438, Academic Press, New York, 1978Google Scholar
  49. Taylor, B. A.: Recombinant inbred mice: Use in genetic analysis of disease resistance. In E. Skamene, P. A. L. Kougsharn, and M. Landy: Genetic Control of Natural Resistance to Infection and Malignancy, pp. 1–8, Academic Press, New York, 1980Google Scholar
  50. Thoday, J. M.: Location of polygenes. Nature 191: 368–370, 1961Google Scholar
  51. Tiwari, J. L. and Terasaki, P. I.: HLA and Disease Associations. Springer-Verlag, Berlin, 1985Google Scholar
  52. van der Gugten, A. A., Röpcke, G., van Nie, R., and Hilgers, J.: Mouse strain (STS/A) resistant to mammary tumor induction by hypophyseal isographs. Cancer Res. 45: 3448–3453, 1985Google Scholar
  53. Wagner, E. F., Covarrubias, L., Stewart, T. A., and Mintz, B.: Prenatal lethalities in mice homozygous for human growth hormone sequence integrated into germ line. Cell 35: 647–655, 1983Google Scholar
  54. Weinberger, C., Holenberg, S. M., Rosenfeld, M. G., and Evans, R. M.: Domain structure of human glucocorticoid receptor and its relationship to the v-erb-A oncogene product. Nature 318: 670–672, 1985Google Scholar

Copyright information

© Springer-Verlag 1986

Authors and Affiliations

  • P. Démant
    • 1
  • A. A. M. Hart
    • 1
  1. 1.Departments of Tumor Biology and Clinical OncologyThe Netherlands Cancer InstituteCX AmsterdamThe Netherlands

Personalised recommendations