Advertisement

Roux's archives of developmental biology

, Volume 198, Issue 5, pp 264–274 | Cite as

Proliferation pattern and early differentiation of the optic lobes in Drosophila melanogaster

  • Alois Hofbauer
  • José A. Campos-Ortega
Article

Summary

The larval and early pupal development of the optic lobes in Drosophila is described qualitatively and quantitatively using [3H]thymidine autoradiography on 2-μm plastic sections. The optic lobes develop from 30–40 precursor cells present in each hemisphere of the freshly hatched larva. During the first and second larval instars, these cells develop to neuroblasts arranged in two epithelial optic anlagen. In the third larval instar and in the early pupa these neuroblasts generate the cells of the imaginal optic lobes at discrete proliferation zones, which can be correlated with individual visual neuropils.

The different neuropils as well as the repetitive elements of each neuropil are generated in a defined temporal sequence. Cells of the medulla are the first to become postmitotic with the onset of the third larval instar, followed by cells of the lobula complex and finally of the lamina at about the middle of the third instar. The elements of each neuropil connected to the most posterior part of the retina are generated first, elements corresponding to the most anterior retina are generated last.

The proliferation pattern of neuroblasts into ganglion mother cells and ganglion cells is likely to include equal as well as unequal divisions of neuroblasts, followed by one or two generations of ganglion mother cells. For the lamina the proliferation pattern and its temporal coordination with the differentiation of the retina are shown.

Key words

Development Visual system Optic ganglia 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bauer V (1904) Zur innern Metamorphose des Centralnervensystems der Insecten. Zool Jahrb Abt Anat Ontog Tiere 20:123–152Google Scholar
  2. Bolwig N (1945/46) Senses and sense organs of the anterior end of the house fly larvae. Vidensk Medd Dan Naturhist Foren 109:81–217Google Scholar
  3. Boschek CB (1971) On the fine structure of the peripheral retina and lamina ganglionaris of the fly, Musca domestica. Z Zellforsch Mikrosk Anat 118:369–409Google Scholar
  4. Braitenberg V (1967) Patterns of projection in the visual system of the fly. I. Retina-lamina projections. Exp Brain Res 3:271–298Google Scholar
  5. Buchner E, Bader R, Buchner S, Cox J, Emson PC, Flory E, Heizmann CW, Hemm S, Hofbauer A, Oertel WH (1988) Cell-specific immuno-probes for the brain of normal and mutant Drosophila melanogaster. Part I: Wildtype visual system. Cell Tissue Res 253:357–370Google Scholar
  6. Cajal SR, Sanchez D (1913) Contribution al concocimiento de los centres nerviosos de los insectos. Parte I. Retina y centros opticos. Trab Invest Biol Madrid 13:1–167Google Scholar
  7. Campos-Ortega JA, Hartenstein V (1985) The embryonic development of Drosophila melanogaster. Springer, Tokyo Berlin Heidelberg New YorkGoogle Scholar
  8. Campos-Ortega JA, Hofbauer A (1977) Cell clones and pattern formation: On the lineage of photoreceptor cells in the compound eye of Drosophila. Roux's Arch Dev Biol 181:227–245Google Scholar
  9. Egelhaaf A, Altenfeld H, Hoffmann H-U (1988) Evidence for the priming role of the central retinula cell in ommatidium differentiation of Ephestia kuehniella. Roux's Arch Dev Biol 197:184–189Google Scholar
  10. El Shatoury HH (1956) Differentiation and metamorphosis of the imaginal optic glomeruli in Drosophila. J Embryol Exp Morphol 4:240–247Google Scholar
  11. Fischbach K-F, Dittrich A (1989) The optic lobe of Drosophila melanogaster. Part I. A Golgi analysis of wild-type structure. Cell Tissue Res 258:441–475Google Scholar
  12. Gundersen RW, Larsen JR (1978) Postembryonic development of the optic lobes of Phormia regina Meigen (Diptera: Calliphoridae). Int J Insect Morphol Embryol 7:121–136Google Scholar
  13. Hanson TE (1972) Neurogenesis in the eye and optic tracts of Drosophila. Caltech Biol Ann Rep 41Google Scholar
  14. Hertweck H (1931) Anatomie und Variabilität des Nervensystems und der Sinnesorgane von Drosophila melanogaster (Meigen). Z Wiss Zool 139:559–663Google Scholar
  15. Kirschfeld K (1967) Die Projektion der optischen Umwelt auf das Raster der Rhabdomere im Komplexauge von Musca. Exp Brain Res 3:248–270Google Scholar
  16. Marcey DJ, Stark WS (1985) The morphology, physiology, and neural projections of supernumerary compound eyes in Drosophila melanogaster. Dev Biol 107:180–197Google Scholar
  17. Marrable AW (1962) The counting of cells and nuclei in microtome sections. Q J Microsc Sci 103:331–347Google Scholar
  18. Maxwell GP, Hildebrand JG (1981) Anatomical and neurochemical consequences of deafferentiation in the development of the visual system of the moth Manduca sexta. J Comp Neurol 195:667–680Google Scholar
  19. Meinertzhagen IA (1973) Development of the compound eye and optic lobe of insects. In: Young D (ed) Developmental neurobiology of arthropods. Cambridge University Press, LondonGoogle Scholar
  20. Meinertzhagen IA (1975) The development of neuronal connection patterns in the visual systems of insects. Ciba Found Symp 29 (New Series) 265–288Google Scholar
  21. Melamed J, Trujillo-Cenóz O (1975) The fine structure of the eye imaginal disks in muscoid flies. J Ultrastruct Res 51:79–93Google Scholar
  22. Nordlander RH, Edwards JS (1968) Morphological cell death in the post-embryonic development of the insect optic lobes. Nature 218:780–781Google Scholar
  23. Nordlander RH, Edwards JS (1969a) Postembryonic brain development in the monarch butterfly, Danaus plexippus plexippus, L. I. Cellular events during brain morphogenesis. Roux's Arch Dev Biol 162:197–217Google Scholar
  24. Nordlander RH, Edwards JS (1969b) Postembryonic brain development in the monarch butterfly, Danaus plexippus plexippus, L. II. The optic lobes. Roux's Arch 163:197–220Google Scholar
  25. Panov AA (1960) The structure of the insect brain at successive stages of postembryonic development. III. Optic lobes. Entomol Rev 39:55–68Google Scholar
  26. Poulson (1959) Histogenesis, organogenesis, and differentiation in the embryo of Drosophila melanogaster Meigen. In: Demerec M (ed) Biology of Drosophila. Wiley, New York, pp 168–274Google Scholar
  27. Ready DF, Hanson TE, Benzer S (1976) Development of the Drosophila retina, a neurocristalline lattice. Dev Biol 53:217–240Google Scholar
  28. Roberts MJ (1971) The structure of the mouthparts of some calypterate dipteran larvae in relation to their feeding habits. Acta Zool (Stockh) 52:171–188Google Scholar
  29. Satija RC, Aggarwal V (1967) Postembryonic development of the eye and its ganglia of Drosophila melanogaster. Res Bull Panjab Univ Sci 18:79–93Google Scholar
  30. Steller H, Fischbach K-F, Rubin GM (1987) Disconnected: a locus required for neuronal pathway formation in the visual system of Drosophila. Cell 50:1139–1153Google Scholar
  31. Strausfeld NJ (1971) The organization of the insect visual system (light microscopy). II. The projection of fibres across the first optic chiasma. Z Zellforsch Mikrosk Anat 121:442–454Google Scholar
  32. Tix S, Minden JS, Technau GM (1989) Pre-existing neuronal pathways in the developing optic lobes of Drosophila. Development 105:739–746Google Scholar
  33. Trujillio-Cenóz O, Melamed J (1973) The development of the retina-lamina complex in muscoid flies. J Ultrastruct Res 42:554–581Google Scholar
  34. Viallanes MH (1885) Études histologiques et organologiques sur les centres nerveux et les organes des sens des animaux articulés. 3e Mémoire. Le ganglion optique de quelques larves de Diptères (Musca, Eristalis, Stratiomys). Ann Sci Nat Zool 19: Art 4, 1–34Google Scholar
  35. White K, Kankel DR (1978) Patterns of cell division and cell movement in the formation of the imaginal nervous system in Drosophila melanogaster. Dev Biol 65:296–321Google Scholar
  36. Zipursky SL, Venkatesh TR, Teplow DB, Benzer S (1984) Neuronal development in the Drosophila retina: monoclonal antibodies as molecular probes. Cell 36:15–26Google Scholar

Copyright information

© Springer-Verlag 1990

Authors and Affiliations

  • Alois Hofbauer
    • 1
  • José A. Campos-Ortega
    • 1
  1. 1.Institut für Biologie IIIFreiburg i.Br.Federal Republic of Germany

Personalised recommendations