Oecologia

, Volume 71, Issue 1, pp 104–110 | Cite as

Water vapor uptake and photosynthesis of lichens: performance differences in species with green and blue-green algae as phycobionts

  • O. L. Lange
  • E. Kilian
  • H. Ziegler
Original Papers

Summary

Dry lichen thalli were enclosed in gas exchange chambers and treated with an air stream of high relative humidity (96.5 to near 100%) until water potential equilibrium was reached with the surrounding air (i.e., no further increase of weight through water vapor uptake). They were then sprayed with liquid water. The treatment took place in the dark and was interrupted by short periods of light. CO2 exchange during light and dark respiration was monitored continuously. With no exception water uptake in all of the lichen species with green algae as phycobionts lead to reactivation of the photosynthetic metabolism. Further-more, high rates of CO2 assimilation were attained without the application of liquid water. To date 73 species with different types of Chlorophyceae phycobionts have been tested in this and other studies. In contrast, hydration through high air humidity alone failed to stimulate positive net photosynthesis in any of the lichens with blue-green algae (Cyanobacteria). These required liquid water for CO2 assimilation. So far 33 species have been investigated, and all have behaved similarly. These have included gelatinous as well as heteromerous species, most with Nostoc phycobionts but in addition some with three other Cyanophyceae phycobionts. The same phycobiont performance differences existed even within the same genus (e.g. Lobaria, Peltigera) between species pairs containing green or blue-green phycobionts respectively. Free living algae also seem to behave in a similar manner. Carbon isotope ratios of the lichen thalli suggest that a definite ecological difference exists in water status-dependent photosynthesis of species with green and blue-green phycobionts. The underlying biochemical or biophysical mechanisms are not yet understood. Apparently, a fundamental difference in the structure of the two groups of algae is involved.

Key words

Lichens Humidity Water vapor uptake Photosynthesis Respiration Water relations 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bertsch A (1966a) Über den CO2-Gaswechsel einiger Flechten nach Wasserdampfaufnahme. Planta 68:157–166Google Scholar
  2. Bertsch A (1966b) CO2-Gaswechsel und Wasserhaushalt der aerophilen Grünalge Apatococcus lobatus. Planta 70:46–72Google Scholar
  3. Büttner R (1971) Untersuchungen zur Ökologie und Physiologie des Gasstoffwechsels bei einigen Strauchflechten. Flora (Jena) 160:72–99Google Scholar
  4. Butin H (1954) Physiologisch-Ökologische Untersuchungen über den Wasserhaushalt und die Photosynthese bei Flechten. Biol Zentralbl 73:459–502Google Scholar
  5. Edlich F (1936) Einwirkung von Temperatur und Wasser auf aerophile Algen. Arch Mikrobiol 7:62–109Google Scholar
  6. Henssen A, Büdel B, Wessels D (1985) New or interesting members of the Lichenaceae from southern Africa. I. Species from northern and eastern Transvaal. Mycotaxon 22:169–195Google Scholar
  7. Kappen L (1983) Ecology and physiology of the Antarctic fruticose lichen Usnea sulphurea (Koenig) Th. Fries. Polar Biol 1:249–255Google Scholar
  8. Lange OL, Bertsch A (1965) Photosynthese der Wüstenflechte Ramalina maciformis nach Wasserdampfaufnahme aus dem Luftraum. Naturwissenschaften 52:215–216Google Scholar
  9. Lange OL, Kappen L (1972) Photosynthesis of lichens from Antarctica. In: Antarctic Terrestrial Biology (ed. Llano GA) 83–95. Antarctic Research 29, American Geophysical Union, Washington DCGoogle Scholar
  10. Lange OL, Kilian E (1985) Reaktivierung der Photosynthese trockener Flechten durch Wasserdampfaufnahme aus dem Luftraum: Artspezifisch unterschiedliches Verhalten. Flora (Jena) 176:7–23Google Scholar
  11. Lange OL, Redon J (1983) Epiphytische Flechten im Bereich einer chilenischen “Nebeloase” (Fray Jorge). II. Ökophysiologische Charakterisierung von CO2-Gaswechsel und Wasserhaushalt. Flora (Jena) 174:245–284Google Scholar
  12. Lange OL, Tenhunen JD (1981) Moisture content and CO2 exchange of lichens. II. Depression of net photosynthesis in Ramalina maciformis at high water content is caused by increased thallus carbon dioxide diffusion resistance. Oecologia (Berlin) 51:426–429Google Scholar
  13. Lange OL, Ziegler H (1986) Different limiting processes of photosynthesis in lichens. In: Biological control of photosynthesis (Marcelle R, Clijsters H, Van Poucke M, eds) Martinus Nijhoff Publishes, Dordrecht, pp 147–161Google Scholar
  14. Lange OL, Schulze E-D, Koch W (1970a) Experimentel-ökologische Untersuchungen an Flechten der Negev-Wüste. II. CO2-Gaswechsel und Wasserhaushalt von Ramalina maciformis (DEL.) BORY am natürlichen Standort während der sommerlichen Trockenperiode. Flora (Jena) 159:38–62Google Scholar
  15. Lange OL, Schulze E-D, Koch W (1970b) Experimentell-ökologische Untersuchungen an Flechten der Negev-Wüste. III. CO2-Gaswechsel und Wasserhaushalt von Krusten- und Blattflechten am natürlichen Standort während der sommerlichen Trockenperiode. Flora (Jena) 159:525–538Google Scholar
  16. Poelt J (1969) Bestimmungsschlüssel europäischer Flechten. Cramer, Lehre/VaduzGoogle Scholar
  17. Redon J, Lange OL (1983) Epiphytische Flechten im Bereich einer chilenischen “Nebeloase” (Fray Jorge). I. Vegetationskundliche Gliederung und Standortsbedingungen. Flora (Jena) 174:213–243Google Scholar
  18. Renner B, Galloway DJ (1982) Phycosymbiodemes in Pseudocyphellaria in New Zealand. Mycotaxon 16:197–231Google Scholar
  19. Rundel WP, Lange OL (1980) Water relations and photosynthetic response of a desert moss. Flora (Jena) 168:329–335Google Scholar
  20. Swinscow TDV (1977) Lichenology: Progress and problems (Review). Lichenologist 9:89–91Google Scholar
  21. Vogel JC (1980) Fractionation of the carbon isotopes during photosynthesis. Sitzungsberichte Heidelberger Akad Wiss, Mathematisch-naturwissenschaftliche Klasse, Jg 1980. Springer, Berlin Heidelberg New YorkGoogle Scholar
  22. Wirth V (1980) Flechtenflora. Ulmer StuttgartGoogle Scholar
  23. Zeuch L (1934) Untersuchungen zum Wasserhaushalt von Pleurococcus vulgaris. Planta 22:614–643Google Scholar

Copyright information

© Springer-Verlag 1986

Authors and Affiliations

  • O. L. Lange
    • 1
  • E. Kilian
    • 1
  • H. Ziegler
    • 2
  1. 1.Lehrstuhl für Botanik II der Universität WürzburgWürzburgGermany
  2. 2.Lehrstuhl für Botanik der Technischen Universität MünchenMünchenGermany

Personalised recommendations