Advertisement

Oecologia

, Volume 77, Issue 4, pp 526–532 | Cite as

Influence of food size and food quantity on the feeding of the mussel Dreissena polymorpha

  • Martin Sprung
  • Udo Rose
Original Papers

Summary

In common with many other suspension feeders, the freshwater mussel Dreissena polymorpha has a maximum filtration rate at low food concentrations and a maximum ingestion rate at high food concentrations. These high rates, which reflect the potential maximum food uptake of the animal, are called the filtration capacity and the ingestion capacity respectively. The ingestion capacity was attained without forming pseudofaeces with Chlamydomonas reinhardii as food. The incipient limiting level could be calculated as the quotient of these two values. A decrease of the filtration rate at high food concentrations was correlated with changes in pumping activity, which showed more frequent interruptions, or a lower level of water transport. Dreissena can filter out particles of diameter greater than 0.7 μm from the water. Retention reaches a plateau at about 5 μm particle diameter. Scanning electron micrographs of the arrangement of the cilia on the gill filaments are given.

Key words

Dreissena polymorpha Filtration capacity Ingestion capacity Incipient limiting concentration Particle retention 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bayne BL, Newell RC (1983) Physiological energetics of marine molluscs. In: Saleuddin ASM, Wilbur KM (eds) The Mollusca, vol 4. Physiology I. Academic Press, New York, pp 407–515Google Scholar
  2. Bayne BL, Thompson RJ, Widdows J (1976) Physiology I. In: Bayne BL (ed) Marine mussels: their ecology and physiology. International Biological Programme, vol 10. Cambridge University Press, pp 121–206Google Scholar
  3. Brand AR, Taylor AC (1974) Pumping activity of Arctica islandica (L.) and some other common bivalves. Mar Behav Physiol 3:1–15Google Scholar
  4. Burns CW, Rigler FH (1967) Comparison of filtering rates of Daphnia rosea in lake water and in suspensions of yeast. Limnol Oceanogr 12:492–502Google Scholar
  5. Chotiyaputta C, Hirayama K (1978) Food selectivity of the rotifer Brachionus plicatilis feeding on phytoplankton. Mar Biol 45:105–111Google Scholar
  6. Davenport J, Woolmington AD (1982) A new method of monitoring ventilatory activity in mussels and its use in a study of ventilatory patterns of Mytilus edulis L. J Exp Mar Biol Ecol 62:55–67Google Scholar
  7. Davids C (1964) The influence of suspensions of microorganisms of different concentrations on the pumping and retention of food by the mussel (Mytilus edulis L.). Neth J Sea Res 2:233–249Google Scholar
  8. Dral ADG (1967) The movements of the latero-frontal cilia and the mechanisms of particle retention in the mussel (Mytilus edulis L.). Neth J Sea Res 3:391–422Google Scholar
  9. Dral ADG (1968) On the feeding of mussels (Mytilus edulis L.) in concentrated food suspensions. Neth J Zool 18:440–441Google Scholar
  10. Famme P, Riisgård HU, Jørgensen CB (1986) On direct measurements of pumping rates in the mussel Mytilus edulis. Mar Biol 92:323–327Google Scholar
  11. Foster-Smith RL (1975) The effect of concentration of suspension on the filtration rates and pseudofaecal production for Mytilus edulis L., Cerastoderma edule (L.) and Venerupis pullastra (Montagu). J Exp Mar Biol Ecol 17:1–22Google Scholar
  12. Foster-Smith RL (1976) Pressures generated by the pumping mechanism of some ciliary filter-feeders. J Exp Mar Biol Ecol 25:199–206Google Scholar
  13. Frost BW (1972) Effects of size and concentration of food particles on the feeding behaviour of the marine planktonic copepod Calanus pacificus. Limnol Oceanogr 17:805–815Google Scholar
  14. Geller W (1975) Die Nahrungsaufnahme von Daphnia pulex in Abhängigkeit von der Futterkonzentration, der Temperatur, der Körpergröße und dem Hungerzustand der Tiere. Arch Hydrobiol/[Suppl] 48:47–107Google Scholar
  15. Gerdes D (1983) The Pacific oyster Crassostrea gigas. Part I. Feeding behaviour of larvae and adults. Aquaculture 31:195–219Google Scholar
  16. Hildreth DI (1976) The influence of water flow rate on pumping rate in Mytilus edulis using a refined direct measurement apparatus. J Mar Biol Ass UK 56:311–319Google Scholar
  17. Hildreth DI, Crisp DJ (1976) A corrected formula for calculation of filtration rate of bivalve molluscs in an experimental flowing system. J Mar Biol Ass UK 56:111–120Google Scholar
  18. Hopp I, Horn W (1984) Untersuchungen über die Abhängigkeit der Filtrier- und Grazing-Rate von der Körpergröße planktischer Cladoceren einer Talsperre, dargestellt am Beispiel von Daphnia hyalina (Leydig). Limnologica (Berl) 15:143–148Google Scholar
  19. Jørgensen CB (1981) A hydromechanical principle for particle retention in Mytilus edulis and other ciliary suspension feeders. Mar Biol 61:277–282Google Scholar
  20. Jørgensen CB (1982) Fluid mechanics of the mussel gill: the lateral cilia. Mar Biol 70:275–281Google Scholar
  21. Jørgensen CB (1983) Fluid mechanical aspects of suspension feeding. Mar Ecol Prog Ser 11:89–103Google Scholar
  22. Jørgensen CB, Goldberg ED (1953) Particle filtration in some ascidians and lamellibranchs. Biol Bull Mar Biol Lab, Woods Hole 105:477–489Google Scholar
  23. Jørgensen CB, Kiørboe T, Møhlenberg F, Riisgård HU (1984) Ciliary and mucus-net filter feeding, with special reference to fluid mechanical characteristics. Mar Ecol Prog Ser 15:283–292Google Scholar
  24. Kersting U, Leeuw W van der (1976) The use of the Coulter Counter for measuring the feeding rates of Daphnia magna. Hydrobiologia 49:233–237Google Scholar
  25. Kiørboc T, Møhlenberg G (1981) Particle selection in suspensionfeeding bivalyes. Mar Ecol Prog Ser 5:291–296Google Scholar
  26. Kuhl A (1962) Beiträge zur Physiologie und Morphologie der Algen. In: Deutsch Bot Ges (ed). Fischer, Stuttgart, pp 157–166Google Scholar
  27. Loosanoff VL (1961) Effects of turbidity on some larval and adult bivalves. Proc Gulf Caribb Fish Inst 14 Ann Sess: 80–95Google Scholar
  28. Loosanoff VL, Engle JB (1947) Effect of different concentrations of microorganisms on the feeding of oysters (O. virginica). Fish Bull 42, Fish Wildl Serv 51:31–57Google Scholar
  29. MacGinitie GE (1945) The size of the mesh openings in mucus feeding nets of marine animals. Biol Bull Mar Biol Lab Woods Hole 88:107–111Google Scholar
  30. Mayzaud P, Poulet SA (1978) The importance of the time factor in the response of zooplankton to varying concentrations of naturally occuring particulate matter. Limnol Oceanogr 23:1144–1154Google Scholar
  31. Mikheyev VP (1967) Filtration nutrition of the Dreissena (russ.) Trudy vses. naucho-issled. Inst Prud Rybn Khoz 15:117–129Google Scholar
  32. Møhlenberg F, Riisgård HU (1978) Efficiency of particle retention in 13 species of suspension feeding bivalves. Ophelia 17:239–246Google Scholar
  33. Moore HJ (1971) The structure of the latero-frontal cirri on the gills of certain lamellibranch molluscs and their role in suspension feeding. Mar Biol 11:23–27Google Scholar
  34. Morton BS (1969) Studies on the biology of Dreissena polymorpha Pall. I. General anatomy and morphology. Proc Malac Soc Lond 38:301–321Google Scholar
  35. Morton BS (1971) Studies on the biology of Dreissena polymorpha Pall. V. Some aspects of filter-feeding and the effect of microorganisms upon the rate of filtration. Proc Malac Soc Lond 39:289–301Google Scholar
  36. Müller H (1972) Wachstum und Phosphorbedarf von Nitzschia actinastroides (Lemm.) v. Goor in statischer und kontinuierlicher Kultur unter Phosphatlimitierung. Arch Hydrobiol/[Suppl] 38:399–484Google Scholar
  37. Newell RIE, Jordan SJ (1983) Preferential ingestion of organic material by the American oyster Crassostrea virginica. Mar Ecol Prog Ser 13:47–53Google Scholar
  38. Owen G (1974) Studies on the gill of Mytilus edulis: The eulaterofrontal cirri. Proc R Soc Lond Ser B 187:83–91Google Scholar
  39. Porter KG, Gerritsen J, Orcutt JD (1982) The effect of food concentration on swimming patterns, feeding behavior, ingestion, assimilation, and respiration by Daphnia. Limnol Oceanogr 27:935–949Google Scholar
  40. Reeve MR (1963) The filter-feeding of Artemia II. In suspensions of various particles. J Exp Biol 40:207–214Google Scholar
  41. Rigler FH (1961) The relation between concentration of food and deeding rate of Daphnia magna Straus. Can J Zool 39:857–868Google Scholar
  42. Schulte EH (1975) Influence of algal concentration and temperature on the filtration rate of Mytilus edulis. Mar Biol 30:331–341Google Scholar
  43. Silvester NR, Sleigh MA (1984) Hydrodynamic aspects of particle capture by Mytilus. J Mar Biol Ass UK 64:859–880Google Scholar
  44. Sprung M (1984) Physiological energetics of mussel larvae (Mytilus edulis). II. Food uptake. Mar Ecol Prog Ser 17:295–305Google Scholar
  45. Stańczykowska A, Lawacz W, Mattice J (1975) Use of field measurements of consumption and assimilation in evaluation of the role of Dreissena polymorpha Pall. in a lake ecosystem. Pol Arch Hydrobiol 22:509–520Google Scholar
  46. Stickney AD (1964) Feeding and growth of the juvenile soft-shell clams, Mya arenaria. Fishery Bull. Fish Wildl Serv US 63:635–655Google Scholar
  47. Tammes PML, Dral ADG (1955) Observations on the straining of suspensions by mussels. Archs Neerl Zool 11:87–112Google Scholar
  48. Ten Winkel EH, Davids C (1983) Food selection by Dreissena polymorpha (Mollusca: Bivalvia). Freshwater Biol 12:553–558Google Scholar
  49. Wallengren H (1905) Zur Biologie der Muscheln. 1. Die Wasserströmungen. (Acta Univ. lund.) Lunds Univ. Arsskr. (Afd. 2) 1:1–64Google Scholar
  50. Walz N (1978) The energy balance of the freshwater mussel Dreissena polymorpha Pallas in laboratory experiments and in Lake Constance. I. Pattern of activity, feeding and assimilation. Arch Hydrobiol/[Suppl] 55:83–105Google Scholar
  51. Wenzel F, Liebisch H (1975) Quantitative Untersuchungen zur Nahrungsaufnahme von Stentor coerulus Ehrenberg. Zool Anz 195:319–337Google Scholar
  52. Widdows J, Worrall C, Fieth P (1979) Relationship between seston, available food and feeding activity in the common mussel Mytilus edulis L. Mar Biol 50:195–207Google Scholar
  53. Wilson JH (1983) Retention efficiency and pumping rate of Ostrea edulis in suspensions of Isochrysis galbana. Mar Ecol Prog Ser 12:51–58Google Scholar
  54. Winter JE (1973) The filtration rate of Mytilus edulis and its dependence on algal concentration, measured by a continuous automatic recording apparatus. Mar Biol 22:317–328Google Scholar
  55. Winter JE (1978) A review on the knowledge of suspension-feeding in lamellibranchiate bivalves, with special reference to artificial acquaculture systems. Aquaculture 13:1–33Google Scholar

Copyright information

© Springer-Verlag 1988

Authors and Affiliations

  • Martin Sprung
    • 1
  • Udo Rose
    • 1
  1. 1.Lehrstuhl für Physiologische ÖkologieZoologisches Institut der Universität zu KölnKöln 41Federal Republic of Germany

Personalised recommendations