Advertisement

Oecologia

, Volume 78, Issue 2, pp 145–157 | Cite as

Morphological adaptation of shape to flow: Microcurrents around lotic macroinvertebrates with known Reynolds numbers at quasi-natural flow conditions

  • B. Statzner
  • T. F. Holm
Original Papers

Summary

Using Laser Doppler Anemometry we measured current velocities in the median plane around dead lotic macroinvertebrates in a flume which reproduced natural near bottom hydraulics. We investigated specimens of the gastropods Ancylus, Acroloxus, and Potamopyrgus, the amphipod Gammarus, and the larval caddisflies Anabolia, Micrasema, and Silo of various size, various alignment to the flow or which were otherwise manipulated in order to clarify certain questions of adaptation of shape or case building style to flow, or the effects of flow on field distribution patterns. The steepest velocity gradients close to the animals were found near areas of their bodies protruding furthest into the flow. In such regions the rates of potential diffusive exchange processes, the potential corrasion (abrasion through suspended solids), and, for larger specimens, the lift forces (directed towards the water surface) must be highest. Posterior of these areas growing boundary layers formed above those species whose upper contour was approximately parallel to the upstream-downstream direction of the flow. All specimens removed momentum from the flow and thus experience a drag force (directed downstream). From the complete data set we derived the following general conclusions about the physical effects of potential morphological adaptations, taking into consideration diffusion through boundary layers, corrasion, lift forces, friction and pressure drag forces: The physical significance of these five factors generally depends on the Reynolds number of an animal and is largely affected by flow separation, which was significantly related to the ratio of body length to height and the slope of the posterior contour. A simultaneous effective morphological adaptation to all five factors is physically impossible and, in addition, would have to change from life at low (e.g. a young, small specimen of a species) to life at high (e.g. a fully grown specimen of the same species) Reynolds number.

Key words

Running waters Shape of benthic invertebrates Diffusive exchange through boundary layers Corrasion Lift and drag force 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Refereces

  1. Ambühl H (1959) Die Bedeutung der Strömung als ökologischer Faktor. Schweiz Z Hydrol 21:133–264Google Scholar
  2. Braimah SA (1987) Pattern of flow around filter-feeding structures of immature Simulium bivittatum Malloch (Diptera: Simuliidae) and Isonychia campestris McDunnough (Ephemeroptera: Oligoneuriidae). Can J Zool 65:514–521Google Scholar
  3. Butz I (1979) Strömungsverhalten von Ecdyonurus venosus (Fabr.) (Ephemeroptera). Proc 2nd Int Conf Ephemeroptera 1975. PAN, Krakow, pp 199–212Google Scholar
  4. Chance MM, Craig DA (1986) Hydrodynamics and behaviour of Simuliidae larvae (Diptera). Can J Zool 64:1295–1309Google Scholar
  5. Craig DA, Chance MM (1982) Filter feeding in larvae of Simuliidae (Diptera: Culicomorpha): aspects of functional morphology and hydrodynamics. Can J Zool 60:712–724Google Scholar
  6. Crowson RA (1981) The biology of the coleoptera. Academic Press, LondonGoogle Scholar
  7. Davis JA (1986) Boundary layers, flow microenvironments and stream benthos. In: DeDeckker P, Williams WD ( eds) Limnology in Australia, CSIRO, Melbourne, pp 293–312Google Scholar
  8. Dodds GS, Hisaw FL (1924) Ecological studies of aquatic insects. II. Size of respiratory organs in relation to environmental conditions. Ecology 5:262–271Google Scholar
  9. Dodds GS, Hisaw FL (1925) Ecological studies on aquatic insects. III. Adaptations of caddisfly larvae to swift streams. Ecology 6:123–137Google Scholar
  10. Durst F, Melling A, Whitelaw JH (1981) Principles and practice of Laser-Doppler Anemometry, 2nd edn. Academic, LondonGoogle Scholar
  11. Dussart GBJ (1987) Effects of water flow on the detachment of some aquatic pulmonate gastropods. Am Malacol Bull 5:65–72Google Scholar
  12. Eastham LES (1937) The gill movements of nymphal Ecdyonurus venosus (Ephemeroptera) and the currents produced by them in water. J Exp Biol 14:219–228Google Scholar
  13. Eriksen CH, Resh VH, Balling SS, Lamberti GA (1984) Aquatic insect respiration. In: Merritt RW, Cummins KW (eds) An introduction to the aquatic insects of North America, 2nd edn. Kendall/Hunt, Dubuque, pp 27–37Google Scholar
  14. Feldmeth CR (1970) The respiratory energetics of two species of stream caddis fly larvae in relation to water flow. Comp Biochem Physiol 32:193–202Google Scholar
  15. Franke U (1977) Experimentelle Untersuchungen zur Respiration von Gammarus fossarum Koch 1835 (Crustacea — Amphipoda) in Abhängigkeit von Temperatur, Sauerstoffkonzentration und Wasserbewegung. Arch Hydrobiol Suppl 48:369–411Google Scholar
  16. Gallepp G (1974a) Diel periodicity in the behaviour of the caddisfly, Brachycentrus americanus (Banks). Freshwater Biol 4:193–204Google Scholar
  17. Gallepp G (1974b) Behavioral ecology of Brachycentrus occidentalis Banks during the pupation period. Ecology 55:1283–1294Google Scholar
  18. Gore JA (1983) Considerations of size related flow preferences among macroinvertebrates used in instream flow studies. In: Shuval HG (ed) Developments in ecology and environmental quality, vol. 2. Balaban Int Publ, Jerusalem, pp 389–398Google Scholar
  19. Johansson A (1986) Caddisfly cases as anti-predatory devices with special reference to limnephilids. Introduct Res Essay No 2. Dept Anim Ecol, UmeaGoogle Scholar
  20. Maude SH, Williams DD (1983) Behavior of crayfish in water currents: hydrodynamics of eight species with reference to their distribution patterns in southern Ontario. Can J Fish Aquat Sci 40:68–77Google Scholar
  21. McShaffrey D, McCafferty WP (1987) The behaviour and form of Psephenus herricki (DeKay) (Coleoptera: Psephenidae) in relation to water flow. Freshwater Biol 18:319–324Google Scholar
  22. Nachtigall W (1974) Biological mechanisms of attachment. Springer, Berlin Heidelberg New YorkGoogle Scholar
  23. Neumann D (19820 Schwachstellen beim Einsatz von Bioindikatoren und weitere Forschungsziele. In: Bick H, Neumann D (eds) Bioindikatoren. Decheniana Beih (Bonn) 26:193–196Google Scholar
  24. Nielsen A (1950) The torrential invertebrate fauna. Oikos 2:176–196Google Scholar
  25. Nowell ARM, Jumars PA (1984) Flow environmens of aquatic benthos. Annu Rev Ecol Syst 15:303–328Google Scholar
  26. Ponyi E (1956) Ökologische, ernährungsbiologische und systematische Untersuchungen an verschiedenen Gammarus-Arten. Arch Hydrobiol 52:367–387Google Scholar
  27. Prandtl L, Oswatitsch K, Wieghardt K (1984) Führer durch die Strömungslehre, 8th edn. Vieweg, BrauschweigGoogle Scholar
  28. Rees CP (1972) The distribution of the amphipod Gammarus pseudolimnaeus Bousfield as influenced by oxygen concentration, substratum, and current velocity. Trans Am Micros Soc 91:514–529Google Scholar
  29. Ruttner F (1926) Bemerkungen über den Sauerstoffgehalt der Gewässer and dessen respiratorischen Wert. Naturwissenschaften 14:1237–1239Google Scholar
  30. Schade H, Kunz E (1980) Strömungslehre. De Gruyter, BerlinGoogle Scholar
  31. Schoenemund E (1930) Eintagsfliegen oder Ephemeroptera. Tierwelt Dtschl No 19. Fischer, JenaGoogle Scholar
  32. Schwenk W, Schwoerbel J (1973) Untersuchungen zur Ernährungsbiologie und Lebensweise der Flußmützenschnecke Ancylus fluviatilis (O.F. Müller 1774; Gastropoda Basommatophora). Arch Hydrobiol Suppl 42:190–231Google Scholar
  33. Smith JA, Dartnall AJ (1980) Boundary layer control by water pennies (Coleoptera: Psephenidae). Aquat Insects 2:65–72Google Scholar
  34. Statzner B (1981) The relation between “hydraulic stress” and microdistribution of benthic macroinvertebrates in a lowland running water system, the Schierenseebrooks (North Germany). Arch Hydrobiol 91:192–218Google Scholar
  35. Statzner B (1987) Ökologische Bedeutung der sohlennahen Strömungsgeschwindigkeit für benthische Wirbellose in Fließgewässern. Habil-Thesis, Univ KarlsruheGoogle Scholar
  36. Statzner B (1988) Growth and Reynolds number of lotic macroinvertebrates: a problem for adaptation of shape to drag. Oikos 51:84–87Google Scholar
  37. Statzner B, Bittner A (1983) Nature and causes of migrations of Gammarus fossarum Koch (Amphipoda) — a field study using a light intensifier for the detection of nocturnal activities. Crustaceana 44:271–291Google Scholar
  38. Statzner B, Holm TF (1982) Morphological adaptations of benthic invertebrates to stream flow — an old question studied by means of a new technique (Laser Doppler Anemometry). Oecologia 53:290–292Google Scholar
  39. Statzner B, Mogel R (1984) No relationship between the substrate surface densities and drift of the stream caddisfly Micrasema longulum (Brachycentridae, Trichoptera) In: Morse JC (ed) Proc 4th Int Symp Trichoptera. Junk, The Hague, pp 383–389Google Scholar
  40. Steinmann P (1907) Die Tierwelt der Gebirgsbäche. Annls Biol Lacustre 2:30–150Google Scholar
  41. St. Quentin D, Beier M (1968) Odonata (Libellen). Handb Zool 4(2)2/6:1–39Google Scholar
  42. Streit B (1980) Ökologie. Thieme, StuttgartGoogle Scholar
  43. Streit B (1981) Food searching and exploitation by a primary consumer (Ancylus fluviatilis) in a stochastic environment: nonrandom movement patterns. Rev Suisse Zool 88:887–895Google Scholar
  44. Sutcliffe DW (1984) Quantitative aspects of oxygen uptake by Gammarus (Crustacea, Amphipoda): a critical review. Freshwater Biol 14:443–489Google Scholar
  45. Vogel S (1981) Life in moving fluids. Grant, BostonGoogle Scholar
  46. Webster DA, Webster PC (1943) Influence of water current on case weight in larvae of the caddisfly, Goera calcarata Banks. Can Entomol 75:105–108Google Scholar
  47. Weissenberger J (1987) Messung der Schub- und Auftriebskräfte an benthischen Wirbellosen der Fließgewässer. Dipl.-Thesis, Univ FreiburgGoogle Scholar
  48. Wesenberg-Lund C (1943) Biologie der Süßwasserinsekten. Gyldendalske/Springer, Kopenhagen/BerlinGoogle Scholar
  49. Wiggins GB (1977) Larvae of the North American caddis fly genera (Trichoptera). Univ Press, TorontoGoogle Scholar
  50. Zwick P (1980) Plecoptera (Steinfliegen). Handb Zool 4(2)2/7:1–111Google Scholar

Copyright information

© Springer-Verlag 1989

Authors and Affiliations

  • B. Statzner
    • 1
  • T. F. Holm
    • 2
  1. 1.Zoologisches Institut I, UniversitätKarlsruheGermany
  2. 2.Q/H-consultSilkeborgDenmark

Personalised recommendations