Archive for History of Exact Sciences

, Volume 44, Issue 3, pp 265–286 | Cite as

The ascendancy of the Laplace transform and how it came about

  • Michael A. B. Deakin
Article

Abstract

The modern Laplace transform is relatively recent. It was first used by Bateman in 1910, explored and codified by Doetsch in the 1920s and was first the subject of a textbook as late as 1937. In the 1920s and 1930s it was seen as a topic of front-line research; the applications that call upon it today were then treated by an older technique — the Heaviside operational calculus. This, however, was rapidly displaced by the Laplace transform and by 1950 the exchange was virtually complete. No other recent development in mathematics has achieved such ready popularisation and acceptance among the users of mathematics and the designers of undergraduate curricula.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Angelini, A. M., Calcolo operatorio e studio dei circuiti elettrici in regime transitori (Milan 1935).Google Scholar
  2. 2.
    Aprile, G., Elementi di calcolo operatorio funzionale (Rome: Ist. Poligrafico di Stato Libreria, 1943).Google Scholar
  3. 3.
    Bateman, H., The control of an elastic fluid. Bull. Amer. Math. Soc. 51 (1945), 601–646. (See footnote 111.)Google Scholar
  4. 4.
    Bell, E. T., The Development of Mathematics (New York: McGraw-Hill, 1940). (See Chapter 19.)Google Scholar
  5. 5.
    Berg, E. J., Heaviside's Operational Calculus as applied to Engineering and Physics (New York: McGraw-Hill, 1929; 2nd Edn., 1936).Google Scholar
  6. 6.
    Berg, L., Introduction to the Operational Calculus (Amsterdam: North Holland, 1967).Google Scholar
  7. 7.
    Bernstein, F., Ueber die numerische Ermittlung verborgener Periodizitäten. Z. ang. Math. Mech. 7 (1927), 441–444.Google Scholar
  8. 8.
    Bernstein, F. & Doetsch, G., Die Integralgleichung der elliptischen Thetanullfunktion. Dritte Note. Dritte Herleitung durch den verallgemeinerten Volterraprozess und weitere Beispiele (Mittag-Lefflersche Funktion und Beltramische Integralgleichung). Nach. K. Gesell. Wissens. Göttingen. Math.-Phys. Klasse (1921, 1922), 32–46.Google Scholar
  9. 9.
    Boole, G., A Treatise on Differential Equations (Cambridge: Macmillan, 1859; 2nd Edn., ibid. 1865; 2nd Edn. reprinted as 5th Edn., New York: Chelsea, n.d. [1959?]). Pagination given in the text is from the 2nd Edn.Google Scholar
  10. 10.
    Bromwich, T. J. I'A., Normal coordinates in dynamical systems. Proc. Lond. Math. Soc. 2 ser. 15 (1914, 1916), 401–448.Google Scholar
  11. 11.
    Bromwich, T. J. I'A., Note on Prof. Carslaw's paper. Math. Gaz. 14 (1928), 226–228.Google Scholar
  12. 12.
    Bromwich, T. J. I'A., An example of operational methods. Phil. Mag. 7 ser. 6 (1928), 922–923.Google Scholar
  13. 13.
    Broadbent, T. A. A., Review of Heaviside's Operational Calculus as applied to Engineering and Physics (Ref. [5]) by E. J. Berg. Math. Gaz. 21 (1937), 309–310.Google Scholar
  14. 14.
    Bush, V., Operational Circuit Analysis (New York: Wiley, 1929).Google Scholar
  15. 15.
    Carslaw, H. S., Introduction to the Mathematical Theory of Conduction of Heat in Solids. (London: Macmillan, 1921; Reprinted, New York: Dover, 1945). This work is listed as the 2nd Edn., being a reworking of part of a 1906 book published under a different title.Google Scholar
  16. 16.
    Carslaw, H. S., Operational methods in mathematical physics (Essay-review of Operational Methods in Mathematical Physics (Ref. [69]) by H. Jeffreys). Math. Gaz. 14 (1928), 216–225.Google Scholar
  17. 17.
    Carslaw, H. S., Historical note on Heaviside's operational method. Math. Gaz. 22 (1938), 485.Google Scholar
  18. 18.
    Carslaw, H. S., Operational methods in mathematical physics. Math. Gaz. 22 (1938), 264–280.Google Scholar
  19. 19.
    Carslaw, H. S., A simple application of the Laplace transformation. Phil. Mag. 7 ser. 30 (1940), 414–417.Google Scholar
  20. 20.
    Carslaw, H. S., Note on the paper “The Temperature Distribution around a Spherical Hole in an Infinite Conducting Medium” by Messrs. Pugh and Harris in the Phil. Mag. p. 661 (Sept. 1942). Phil. Mag. 7 ser. 34 (1943), 288.Google Scholar
  21. 21.
    Carslaw, H. S. & J. C. Jaeger, Operational Methods in Applied Mathematics (Oxford: Clarendon, 1941).Google Scholar
  22. 22.
    Carslaw, H. S. & J. C. Jaeger, Some problems in the mathematical theory of the conduction of heat. Phil. Mag. 7 ser. 26 (1938), 473–495.Google Scholar
  23. 23.
    Carslaw, H. S. & J. C. Jaeger, The determination of Green's function for line sources for the equation of conduction of heat in cylindrical coordinates by the Laplace transformation. Phil. Mag. 7 ser. 31 (1941), 204–208.Google Scholar
  24. 24.
    Carson, J. R., Electric Circuit Theory and the Operational Calculus (New York: Chelsea, 1926; 2nd Edn., 1952; German version, 1929).Google Scholar
  25. 25.
    Carter, G. W., The Simple Calculation of Electrical Transients: an Elementary Treatment of Transient Problems in Linear Electrical Circuits by Heaviside's Operational Methods (London: Macmillan, 1944).Google Scholar
  26. 26.
    Churchill, R. V., A heat conduction problem introduced by C. J. Tranter. Phil. Mag. 7 ser. 31 (1941), 81–87.Google Scholar
  27. 27.
    Churchill, R. V., Modern Operational Mathematics in Engineering (New York: McGraw-Hill, 1944; 2nd Edn. titled Operational Mathematics, 1958).Google Scholar
  28. 28.
    Cohen, L., Heaviside's Electrical Circuit Theory (New York: McGraw-Hill, 1928).Google Scholar
  29. 29.
    Cooper, J. L. B., Heaviside and the operational calculus. Math. Gaz. 36 (1952), 5–18.Google Scholar
  30. 30.
    Coulthard, W. B., Transients in Electric Circuits using the Heaviside Operational Calculus (London: Pitman, 1946).Google Scholar
  31. 31.
    Cromwell, P. C., A construction theorem for evaluating operational expressions having a finite number of different roots. Trans. Amer. Inst. Elec. Eng. 60 (1941), 273–276. See also p. 676 for a comment by E. Weber.Google Scholar
  32. 32.
    Dahr, K., A Course of Integrational and Operational Calculus with Applications to Physics and Electrotechnics (Stockholm: Lindstahl, 1939; German edition, ibid. 1939).Google Scholar
  33. 33.
    Dalton, J. P., Symbolic Operators (Johannesberg: Witwatersrand, 1954).Google Scholar
  34. 34.
    Deakin, M. A. B., The development of the Laplace transform, 1737–1937: I. Euler to Spitzer, 1737-1880. Arch. Hist. Ex. Sci. 25 (1981), 343–390.Google Scholar
  35. 35.
    Deakin, M. A. B., The development of the Laplace transform, 1737-1937: II. Poincaré to Doetsch, 1880-1937. Arch. Hist. Ex. Sci. 26 (1982), 351–381.Google Scholar
  36. 36.
    Deakin, M. A. B., Motivating the Laplace transform. Int. J. Math. Ed. Sci. Tech. 12 (1981), 415–418.Google Scholar
  37. 37.
    Deakin, M. A. B., Operational calculus and the Laplace transform. Aust. Math. Soc. Gaz. 17 (1990), 133–139. Corrigendum, ibid., 171.Google Scholar
  38. 38.
    Deakin, M. A. B., Laplace transforms for superexponential functions. To appear.Google Scholar
  39. 39.
    Dhar, S. C., On the operational representation of M-functions of the confluent hypergeometric type. Phil. Mag. 7 ser. 25 (1938), 416–425.Google Scholar
  40. 40.
    Doetsch, G., Review of Elektrische Ausgleichsvorgänge und Operatorenrechnung (German version of Ref. [24]) Jahresb. Deutsche. Math. Ver. 39 (1930), Literarisches 105–109. An English translation is included in Ref. [126].Google Scholar
  41. 41.
    Doetsch, G., Theorie und Anwendung der Laplace-Transformation (Berlin: Springer, 1937; 2nd Edn, New York: Dover, 1943).Google Scholar
  42. 42.
    Doetsch, G., Handbuch der Laplace-Transformation (Basel: Birkhauser; Bd. I, 1950; Bd. II, 1955; Bd. III. 1956).Google Scholar
  43. 43.
    Doetsch, G., Einfuhrung in Theorie und Anwendung der Laplace-Transformation (Berlin: Springer, 1970; English translation, ibid. 1974).Google Scholar
  44. 44.
    Droste, H. W., Die Lösung angewandter Differentialgleichungen mittels Laplacescher Transformation (Neuere Rechenverfahren der Technik 1) (Berlin: Mittler, 1939).Google Scholar
  45. 45.
    Erdélyi, A., Inversion formulae for the Laplace Transformation. Phil. Mag. 7 ser. 34 (1943), 533–537.Google Scholar
  46. 46.
    Erdélyi, A., Harry Bateman, 1882-1946. Obit. Not. Fel. Roy. Soc. 5 (1948), 590–618. See p. 598.Google Scholar
  47. 47.
    Ertel, H., Elemente der Operatorenrechnung mit geophysikalischen Anwendungen (Berlin: Springer, 1940).Google Scholar
  48. 48.
    Feller, W., An Introduction to Probability Theory and its Applications, Vol. II (New York: Wiley, 1966).Google Scholar
  49. 49.
    Gardner, M. F., Operational Calculus. Elect. Eng. 53 (1934), 1339–1347.Google Scholar
  50. 50.
    Gardner, M. F. & J. L. Barnes, Transients in Linear Systems, Volume 1: Lumped Constant Systems (New York: Wiley, 1942).Google Scholar
  51. 51.
    Ghizzetti, A., Calcolo simbolico: La trasformazione di Laplace e il calcolo simbolico degli elettrotecnici (Bologna: Zanichelli, 1943).Google Scholar
  52. 52.
    Grünwald, E., Lösungsverfahren der Laplace-Transformation für Ausgleichsvorgänge in linearen Netzen angewandt auf selbsttätige Regelungen. Arch. Elektrotech. 35 (1941), 379–400.Google Scholar
  53. 53.
    Hameister, E., Laplace-Transformation: eine Einführung für Physiker Elektro-Maschinerie und Bauingenieure (Munich: Oldenbourg, 1943; reprinted Ann Arbor: Edwards, 1946).Google Scholar
  54. 54.
    Heaviside, O., Electromagnetic Theory, Vol. III (London: ‘The Electrician’, 1912; reprinted as 3rd Edn., New York: Chelsea, 1971).Google Scholar
  55. 55.
    Herreng, P., Les applications du calcul opérational (Paris: Masson, 1944).Google Scholar
  56. 56.
    Higgins, T. J., History of the operational calculus as used in electric circuit analysis. Elec. Eng. 68 (1949), 42–45.Google Scholar
  57. 57.
    Horn, J., Integration linearer Differentialgleichungen durch Laplacesche Integrale. Math. Z. 49 (1944), 339–350, 684–701.Google Scholar
  58. 58.
    Howell, W. T., On some operational representations of products of parabolic cylinder functions and products of Laguerre polynomials. Phil. Mag. 7 ser. 24 (1937), 1082–1093.Google Scholar
  59. 59.
    Howell, W. T., A note on Laguerre polynomials. Phil. Mag. 7 ser. 28 (1939), 287–288.Google Scholar
  60. 60.
    Howell, W. T., A note on the solution of some partial differential equations in the finite domain. Phil. Mag. 7 ser. 28 (1939), 396–402.Google Scholar
  61. 61.
    Humbert, P., Le calcul symbolique (Actualités scientifiques et industrielles 147) (Paris: Hermann, 1934).Google Scholar
  62. 62.
    Ince, E. L., Ordinary Differential Equations (London: Longmans, 1927; Reprinted, New York: Dover, 1965).Google Scholar
  63. 63.
    Itoo, T., Pseudo-operational calculus. Tôhoku Math. J. 42 (1936), 230–247.Google Scholar
  64. 64.
    Jaeger, J. C., Magnetic screening by hollow circular cylinders. Phil. Mag. 7 ser. 29 (1940), 18–31.Google Scholar
  65. 65.
    Jaeger, J. C., Heat conduction in composite circular cylinders. Phil. Mag. 7 ser. 32 (1941), 324–335.Google Scholar
  66. 66.
    Jaeger, J. C., Heat conduction in a wedge, or an infinite cylinder whose cross-section is a circle or a sector of a circle. Phil. Mag. 7 ser. 33 (1942), 527–536.Google Scholar
  67. 67.
    Jaeger, J. C., Horatio Scott Carslaw, 1870–1954; A centennial oration (Ed. H. O. Lancaster). Aust. Math. Soc. Gaz. 8 (1981), 1–18.Google Scholar
  68. 68.
    Janet, P., Le calcul symbolique d'Heaviside et ses applications à l'électrotechnique (Paris: Gauthier, 1938).Google Scholar
  69. 69.
    Jeffreys, H., Operational Methods in Mathematical Physics (Cambridge University Press, 1927; various later editions under different titles).Google Scholar
  70. 70.
    Jeffreys, H., [Reply to Carslaw.] Math. Gaz. 14 (1928), 225–226.Google Scholar
  71. 71.
    Jeffreys, H., Heaviside's pure mathematics. In The Heaviside Centenary Volume (London: The Institution of Electrical Engineers, 1950), 90–92.Google Scholar
  72. 72.
    Josephs, H. J., Heaviside's Electric Circuit Theory (London: Methuen; Brooklyn, N. Y.: Chemical Publ., 1946).Google Scholar
  73. 73.
    Koppelmann, E., The calculus of operations and the rise of abstract algebra. Arch. Hist. Ex. Sci. 8 (1972), 155–242.Google Scholar
  74. 74.
    Krabbe, G., Operational Calculus (Berlin: Springer, 1970).Google Scholar
  75. 75.
    Koziumi, S., On Heaviside's operational solution of a Volterra's integral equation when its nucleus is a function of (x − ξ). Phil. Mag. 7 ser. 11(1931), 432–441.Google Scholar
  76. 76.
    Koziumi, S., A new method of evaluation of the Heaviside operational expression by Fourier series. Phil. Mag. 7 ser. 19 (1935), 1061–1076.Google Scholar
  77. 77.
    Lévy, P., Le calcul symbolique d'Heaviside. (Paris: Gauthier, 1928).Google Scholar
  78. 78.
    Lowan, A. N., On the cooling of a radioactive sphere. Phys. Rev. 44 (1933), 769–775.Google Scholar
  79. 79.
    Lowan, A. N., On the operational treatment of certain mechanical and electrical problems. Phil. Mag. 7 ser. 17 (1934), 1134–1144.Google Scholar
  80. 80.
    Lowan, A. N., On the operational determination of Green's functions in the theory of heat conduction. Phil. Mag. 7 ser. 24 (1937), 62–70.Google Scholar
  81. 81.
    Lowan, A. N., On wave-motion for infinite domains. Phil. Mag. 7 ser. 24 (1938), 340–360.Google Scholar
  82. 82.
    Lowan, A. N., On the problem of wave-motion for subinfinite domains. Phil. Mag. 7 ser. 27 (1939), 182–194. Corrigendum. ibid., 769.Google Scholar
  83. 83.
    Lowan, A. N., On some problems in the diffraction of heat. Phil. Mag. 7 ser. 29 (1940), 93–99.Google Scholar
  84. 84.
    Lowan, A. N., On the problem of wave-motion for the wedge of an angle. Phil. Mag. 7 ser. 31 (1941), 373–381.Google Scholar
  85. 85.
    Lowry, H. V., Operational calculus — Part I. The definition of an operational representation of a function and some properties of the operator derived from this definition. Phil. Mag. 7 ser. 13 (1932), 1033–1048.Google Scholar
  86. 86.
    Lowry, H. V., Operational calculus — Part II. The values of certain integrals and the relationship between various polynomials and series obtained by operational methods. Phil. Mag. 7 ser. 13 (1932), 1144–1163.Google Scholar
  87. 87.
    Luikov, A., The application of the Heaviside-Bromwich operational method to the solution of a problem in heat conduction. Phil. Mag. 7 ser. 22 (1936), 239–248.Google Scholar
  88. 88.
    Lützen, J., Heaviside's operational calculus and the attempts to rigorise it. Arch. Hist. Ex. Sci. 21 (1979), 161–200.Google Scholar
  89. 89.
    McLachlan, N. W., Operational systems. Phil. Mag. 7 ser. 25 (1938), 259–269.Google Scholar
  90. 90.
    McLachlan, N. W., Submarine cable problems solved by contour integration. Math. Gaz. 22 (1938), 37–41.Google Scholar
  91. 91.
    McLachlan, N. W., Review of Elementary Theory of Operational Mathematics by E. Stephens (Ref. [121]). Math. Gaz. 22 (1938), 201–204.Google Scholar
  92. 92.
    McLachlan, N. W., Historical note on Heaviside's operational method. Math. Gaz. 22 (1938), 255–260.Google Scholar
  93. 93.
    McLachlan, N. W., [Reply to Carslaw.] Math. Gaz. 22 (1938), 485.Google Scholar
  94. 94.
    McLachlan, N. W., Operational forms and contour integrals for Bessel functions with argument a√t2−b2. Phil. Mag. 7 ser. 26 (1938), 394–408.Google Scholar
  95. 95.
    McLachlan, N. W., Operational forms and contour integrals for Struve and other functions. Phil. Mag. 7 ser. 26 (1938), 457–473.Google Scholar
  96. 96.
    McLachlan, N. W., Operational form of f(t) for a finite interval with application to impulses. Phil. Mag. 7 ser. 26 (1938), 695–704.Google Scholar
  97. 97.
    McLachlan, N. W., Complex Variable and Operational Calculus with Technical Applications (Cambridge University Press, 1939; various later editions under different titles).Google Scholar
  98. 98.
    McLachlan, N. W. & P. Humbert, Formulaire pour le calcul symbolique (Paris: Gauthier, 1941).Google Scholar
  99. 99.
    McLachlan, N. W. & A. L. Meyers, Operational forms for Bessel and Struve functions. Phil. Mag. 7 ser. 23 (1937), 918–925.Google Scholar
  100. 100.
    Mersman, W. A., Preliminary draft for an English translation of Theorie und, Anwendungen der Laplace-Transformation by G. Doetsch (Ref. [41]) (Berkeley: Department of Mechanical Engineering, University of California, 1939).Google Scholar
  101. 101.
    Mikusiński, J., Rachunek operatorów (Warsaw: Państowe Wydawnictwo Naukowe, 1957; English translation, Operational Calculus, Oxford: Pergamon, 1959).Google Scholar
  102. 102.
    Moore, D. H., Heaviside Operational Calculus (New York: Elsevier, 1971).Google Scholar
  103. 103.
    Nathan, H., Article on Bernstein in Dictionary of Scientific Biography Vol. II (Ed. C. C. Gillespie et al.) (New York: Scribner, 1970), 58–59.Google Scholar
  104. 104.
    Pipes, L. A., Operational and matrix methods in linear variable networks. Phil. Mag. 7 ser. 25 (1938), 585–600.Google Scholar
  105. 105.
    Pipes, L. A., The operational theory of solid friction. Phil. Mag. 7 ser. 25 (1938), 950–961.Google Scholar
  106. 106.
    Pipes, L. A., The operational calculus I. J. App. Phys. 10 (1939), 172–180.Google Scholar
  107. 107.
    Pipes, L. A., The operational calculus II, J. App. Phys. 10 (1939), 258–264.Google Scholar
  108. 108.
    Pipes, L. A., The operational calculus III. J. App. Phys. 10 (1939), 301–311.Google Scholar
  109. 109.
    van der Pol, B., A simple proof and an extension of Heaviside's operational calculus for invariable systems. Phil. Mag. 7 ser. 7 (1929), 1153–1162.Google Scholar
  110. 110.
    van der Pol, B., On the operational solution of linear differential equations and an investigation of the properties of these equations. Phil. Mag. 7 ser. 8 (1929), 861–898.Google Scholar
  111. 111.
    van der Pol, B. & H. Bremmer, Operational Calculus Based on the Two-Sided Laplace Integral (Cambridge University Press, 1950).Google Scholar
  112. 112.
    Potier, R. & J. Laplume, Le calcul symbolique et quelques applications à la physique et à l'électricité (Actualités scientifiques et industrielles 947) (Paris: Hermann, 1943).Google Scholar
  113. 113.
    Pugh, H. Ll. D. & A. J. Harris, The temperature distribution around a spherical hole in an infinite conducting medium. Phil. Mag. 7 ser. 33 (1942), 661–666. Corrigendum, ibid. 34 (1943), 288, in reply to a note by Carslaw. Google Scholar
  114. 114.
    Robertson, B. L., Operational method of circuit analysis. Elec. Eng. 54 (1935), 1037–1045.Google Scholar
  115. 115.
    Russell, J. B., Heaviside's direct operational calculus. Elec. Eng. 61 (1942), 84–88.Google Scholar
  116. 116.
    Schlömilch, O., Review of Studien über die Integration linearer Differentialgleichungen by S. Spitzer. Z. Math. Phys. (Schlömilch) 5 (1860), Literaturzeitung 17–18.Google Scholar
  117. 117.
    Seeley, W. J., An Introduction to the Operational Calculus (Scranton, Pa.: International Textbook Co., 1941).Google Scholar
  118. 118.
    Spiegel, M., Theory and Problems of Laplace Transforms (New York: McGraw-Hill (Schaum), 1965).Google Scholar
  119. 119.
    von Stachó, T., Operationskalkül von Heaviside und Laplacesche Transformation. Acta Szeged 3 (1927), 107–120.Google Scholar
  120. 120.
    Starr, A. T., Ballistic and perfect balances in bridges treated by the operational calculus. Phil. Mag. 7 ser. 12 (1931), 265–280.Google Scholar
  121. 121.
    Stephens, E., Elementary Theory of Operational Mathematics (New York: McGraw-Hill, 1937).Google Scholar
  122. 122.
    Sumpner, W. E., Impulse functions. Phil. Mag. 7 ser. 11 (1931), 345–368.Google Scholar
  123. 123.
    Tranter, C. J., Note on a problem in the conduction of heat. Phil. Mag. 7 ser. 28 (1939), 579–583. Corrigendum, ibid. 31 (1941), 432.Google Scholar
  124. 124.
    Tranter, C. J., The application of the Laplace transformation to a problem in elastic vibrations. Phil. Mag. 7 ser. 33 (1942), 614–622.Google Scholar
  125. 125.
    Turney, T. H., Heaviside's Operational Calculus Made Easy (London: Chapman and Hall, 1944; 2nd Edn. 1946).Google Scholar
  126. 126.
    Vandenberg, A.-M. & M. A. B. Deakin, Operational calculus and the Laplace transform. Monash University History of Mathematics Paper 38 (1987).Google Scholar
  127. 127.
    Varma, R. S., Operational representation of the parabolic cylinder functions. Phil. Mag. 7 ser. 22 (1936), 29–34.Google Scholar
  128. 128.
    Varma, R. S., Operational representation of the parabolic cylinder functions — second paper. Phil. Mag. 7 ser. 23 (1937), 926–928.Google Scholar
  129. 129.
    Vignaux, J. C., Sugli integrali di Laplace asintotici. Atti Accad. naz. Lincei, Rend. Cl. Sci. fis. mat. 6 ser. 29 (1939), 396–402.Google Scholar
  130. 130.
    Wagner, K. W., Über eine Formel von Heaviside zur Berechnung von Einschaltvorgängen. (Mit Anwendungsbeispielen.) Arch. Electrotech. 4 (1916), 159–193.Google Scholar
  131. 131.
    Wagner, K. W., Operatorenrechnung nebst Anwendungen in Physik und Technik (Leipzig: Barth, 1940; various later editions under various titles).Google Scholar
  132. 132.
    Wagner, K. W., Laplace Transformation und Operatorenrechnung. Arch. Electrotech. 35 (1941), 502–506.Google Scholar
  133. 133.
    Widder, D. V., A generalization of Dirichlet's series and of Laplace's integrals by means of a Stieltjes integral. Trans. Amer. Math. Soc. 31 (1929), 694–743.Google Scholar
  134. 134.
    Widder, D. V., The Laplace Transform (Princeton University Press, 1946).Google Scholar

Copyright information

© Springer-Verlag 1992

Authors and Affiliations

  • Michael A. B. Deakin
    • 1
  1. 1.Department of MathematicsMonash UniversityClaytonAustralia

Personalised recommendations