Current Genetics

, Volume 15, Issue 6, pp 393–398 | Cite as

An α-specific gene, SAG1 is required for sexual agglutination in Saccharomyces cerevisiae

  • Syuichi Doi
  • Kazuyuki Tanabe
  • Masayasu Watanabe
  • Masayoshi Yamaguchi
  • Masao Yoshimura
Original articles


Seven α-specific mutants specifically defective in sexual agglutinability were isolated. The other α mating functions exhibited by these mutants, designated sag mutants, such as the production of α pheromone and response to a mating pheromone, were normal. While the MATα sag1 cells did not agglutinate with wild-type a cells, the MATα sag1 cells did, indicating that the SAG1 gene is expressed only in α cells. The mutations were semi-dominant and fell into a single complementation group, SAG1, which was mapped near met3 on chromosome X. Complementation analysis showed that sag1 and aga1, the latter being a previously reported α-specific mutation, were mutations in the same gene.

Key words

Yeast Mating Sexual agglutination a-Specific mutation 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Betz R, MacKay VL, Duntze W (1977) J Bacteriol 132:462–472Google Scholar
  2. Chan RK, Otte CA (1982) Mol Cell Biol 2:21–29Google Scholar
  3. Doi S, Yoshimura M (1978) Mol Gen Genet 162:251–257Google Scholar
  4. Doi S, Yoshimura M (1985) J Bacteriol 162:596–601Google Scholar
  5. Hagiya M, Yoshida K, Yanagishima N (1977) Exp Cell Res 104:263–272Google Scholar
  6. Hartwell LH (1980) J Cell Biol 85:811–822Google Scholar
  7. Herskowitz I, Oshima Y (1981) In: Strathern JN, Jones EW, Broach JR (eds) The molecular biology of the yeast Saccharomyces. Cold Spring Harbor Laboratory,Cold Spring Harbor, NY, pp 181–209Google Scholar
  8. Kassir Y, Simchen G (1976) Genetics 82:187–206Google Scholar
  9. Leibowitz MT, Wickner RB (1976) Proc Natl Acad Sci USA 73:2061–2065Google Scholar
  10. MacKay V, Manney TR (1974a) Genetics 76:255–271Google Scholar
  11. MacKay V, Manney TR (1974b) Genetics 76:273–288Google Scholar
  12. Mortimer RK, Schild D (1980) Microbiol Rev 44:519–571Google Scholar
  13. Sijimons PC, Nederbragt AJA, Klis FM, Van Den Ende H (1987) Arch Microbiol 148:208–212Google Scholar
  14. Sprague GF Jr, Herskowitz I (1981) J Mol Biol 147:357–372Google Scholar
  15. Suzuki K, Yanagishima N (1985) Curr Genet 9:185–189Google Scholar
  16. Suzuki K, Yanagishima N (1986) Curr Genet 10:353–357Google Scholar
  17. Terrance K, Heller P, Wu Y, Lipke PN (1987) J Bacteriol 169:475–482Google Scholar
  18. Tohoyama K, Yanagishima N (1982) Mol Gen Genet 186:322–327Google Scholar
  19. Watzele M, Klis F, Tanner W (1988) EMBO J 7:1483–1488Google Scholar
  20. Whiteway M, Szostak JW (1985) Cell 43:483–492Google Scholar
  21. Wickner RB (1974) J Bacteriol 117:252–260Google Scholar
  22. Wilson K, Herskowitz I (1987) Genetics 155:441–449Google Scholar

Copyright information

© Springer-Verlag 1989

Authors and Affiliations

  • Syuichi Doi
    • 1
  • Kazuyuki Tanabe
    • 3
  • Masayasu Watanabe
    • 2
  • Masayoshi Yamaguchi
    • 1
  • Masao Yoshimura
    • 1
  1. 1.Department of Legal MedicineKinki University School of MedicineOsaka-Sayama, OsakaJapan
  2. 2.Department of BacteriologyKinki University School of MedicineOsaka-Sayama, OsakaJapan
  3. 3.Department of Medical ZoologyOsaka City University Medical SchoolAsahi-machi, Abeno-ku, OsakaJapan

Personalised recommendations