Current Genetics

, Volume 14, Issue 3, pp 211–223 | Cite as

A reexamination of the role of the RAD52 gene in spontaneous mitotic recombination

  • Robert E. Malone
  • Beth A. Montelone
  • Charles Edwards
  • Kevin Carney
  • Merl F. Hoekstra
Original Articles


The RAD52 gene is required for much of the recombination that occurs in Saccharomyces cerevisiae. One of the two commonly utilized mutant alleles, rad52-2, increases rather than reduces mitotic recombination, yet in other respects appears to be a typical rad52 mutant allele. This raises the question as to whether RAD52 is really necessary for mitotic recombination. Analysis of a deletion/insertion allele created in vitro indicates that the null mutant phenotype is indeed a deficiency in mitotic recombination, especially in gene conversion. The data also indicate that RAD52 is required for crossing-over between at least some chromosomes. Finally, examination of the behavior of a replicating plasmid in rad52-1 strains indicates that the frequency of plasmid integration is substantially reduced from that in wild type, a conclusion consistent with a role for RAD52 in reciprocal crossing-over. Analysis of recombinants arising in rad52-2 strains suggests that this allele may result in the increased activity of a RAD52-independent recombinational pathway.

Key words

Mitotic recombination DNA repair Yeast RAD52 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Adzuma K, Ogawa T, Ogawa H (1984) Mol Cell Biol 4:2735–2744Google Scholar
  2. Boyer HW, Roulland-Dussoix D (1969) J Mol Biol 41:459–472Google Scholar
  3. Bruschi CV, Esposito MS (1983) Proc Natl Acad Sci USA 80:7566–7570Google Scholar
  4. Chlebowicz E, Jachymczyk WJ (1979) Mol Gen Genet 167:279–286Google Scholar
  5. Esposito MS (1978) Proc Natl Acad Sci USA 75:4436–4440Google Scholar
  6. Fangman WL, Zakian VA (1981) Genome structure and replication. In: Strathern J, Broach J, Jones EW (eds) The molecular biology of the yeast Saccharomyces, part I. Cold Spring Harbor Laboratory, Cold Spring Harbor, New York, pp 27–59Google Scholar
  7. Game JC (1983) Radiation-sensitive mutants and repair in yeast. In: Spencer JFT, Spencer DM, Smith ARW (eds) Yeast genetics. Fundamental and applied aspects. Springer, New York Berlin Heidelberg, pp 109–137Google Scholar
  8. Game JC, Mortimer RK (1974) Mutat Res 24:281–292Google Scholar
  9. Game JC, Zamb TJ, Braun RJ, Resnick MA, Roth RM (1980) Genetics 94:51–68Google Scholar
  10. Golin JE, Esposito MS (1981) Mol Gen Genet 183:252–263Google Scholar
  11. Golin JE, Esposito MS (1984) Genetics 107:355–365Google Scholar
  12. Golin JE, Falco SC, Margolskee JP (1986) Genetics 114:1081–1094Google Scholar
  13. Haber JE, Hearn M (1985) Genetics 111:7–22Google Scholar
  14. Haynes RH, Kunz BA (1981) DNA repair and mutagenesis in yeast. In: Strathern J, Broach J, Jones EW (eds) The molecular biology of the yeast Saccharomyces, part I. Cold Spring Harbor Laboratory, Cold Spring Harbor, New York, pp 371–414Google Scholar
  15. Hinnen A, Hicks JB, Fink GR (1978) Proc Natl Acad Sci USA 75:1929–1933Google Scholar
  16. Ho KSY (1975) Mutat Res 30:327–334Google Scholar
  17. Hoekstra MF, Malone RE (1986) Mol Cell Biol 6:3555–3558Google Scholar
  18. Hoekstra MF, Naughton T, Malone RE (1986) Genet Res 48:9–17Google Scholar
  19. Jackson JA, Fink GR (1981) Nature 292:306–311Google Scholar
  20. Judd SR, Petes TD (1988) Genetics 118:401–410Google Scholar
  21. Keil RL, Roeder GS (1984) Cell 39:377–386Google Scholar
  22. Klapholz S, Waddell CS, Esposito RE (1985) enetics 110:187–216Google Scholar
  23. Klar AJS, Strathern JN, Abraham JA (1984) Cold Spring Harbor Symp Quant Biol 49:77–88Google Scholar
  24. Malone RE (1983) Mol Gen Genet 189:405–412Google Scholar
  25. Malone RE, Esposito RE (1980) Proc Natl Acad Sci USA 77:503–507Google Scholar
  26. Malone RE, Esposito RE (1981) Mol Cell Biol 1:891–901Google Scholar
  27. Malone RE, Hoekstra MF (1984) Genetics 107:33–48Google Scholar
  28. Malone RE, Golin JE, Esposito MS (1980) Curr Genet 1:241–248Google Scholar
  29. Malone RE, Jordan K, Wardman W (1985) Curr Genet 9:453–461Google Scholar
  30. Meselson MS, Radding CM (1975) Proc Natl Acad Sci USA 72:358–361Google Scholar
  31. Montelone BA, Prakash S, Prakash L (1981) J Bacteriol 147:517–525Google Scholar
  32. Montelone BA, Hoekstra MF, Malone RE (1988) Genetics 119:289–301 289-301Google Scholar
  33. Moore CW, Sherman F (1975) Genetics 79:397–418Google Scholar
  34. Mortimer RK, Schild D (1985) Microbiol Rev 49:181–212Google Scholar
  35. Mortimer RK, Contopoulou R, Schild D (1981) Proc Natl Acad Sci USA 78:5778–5782Google Scholar
  36. Murray AW, Szostak JW (1983) Cell 34:961–970Google Scholar
  37. Orr-Weaver TL, Szostak J, Rothstein RJ (1981) Proc Natl Acad Sci USA 78:6354–6358Google Scholar
  38. Petes TD, Botstein D (1977) Proc Natl Acad Sci USA 74:5091–5095Google Scholar
  39. Prakash L, Taillon-Miller P (1981) Curr Genet 3:247–250Google Scholar
  40. Prakash S, Prakash L, Burke W, Montelone BA (1980) Genetics 94:31–50Google Scholar
  41. Resnick MA (1969) Genetics 62:519–531Google Scholar
  42. Resnick MA, Martin P (1976) Mol Gen Genet 143:119–129Google Scholar
  43. Resnick MA, Nitiss J, Edwards C, Malone RE (1986) Genetics 113:531–550Google Scholar
  44. Saeki T, Machida I, Nakai S (1980) Mutat Res 73:251–265Google Scholar
  45. Southern EM (1975) J Mol Biol 98:503–517Google Scholar
  46. Stinchcomb DT, Thomas M, Kelly J, Selker E, Davis RW (1980) Proc Natl Acad Sci USA 77:4559–4563Google Scholar
  47. Strathern JN, Klar AJS, Hicks JB, Abraham JA, Ivy JM, Nasmyth KA, McGill C (1982) Cell 31:183–192Google Scholar
  48. Szostak JW, Orr-Weaver TL, Rothstein RJ, Stahl F (1983) Cell 33:25–35Google Scholar
  49. Warren GJ (1985) Curr Genet 7:235–237Google Scholar
  50. Weiffenbach B, Haber JE (1981) Mol Cell Biol 6:522–534Google Scholar
  51. Willis KK, Klein HL (1987) Genetics 117:633–643Google Scholar
  52. Zamb TJ, Petes TD (1981) Curr Genet 3:125–132Google Scholar

Copyright information

© Springer-Verlag 1988

Authors and Affiliations

  • Robert E. Malone
    • 1
  • Beth A. Montelone
    • 1
  • Charles Edwards
    • 2
  • Kevin Carney
    • 2
  • Merl F. Hoekstra
    • 3
  1. 1.Department of BiologyUniversity of IowaIowa CityUSA
  2. 2.Department of MicrobiologyLoyola University School of MedicineMaywoodUSA
  3. 3.Department of Molecular BiologyScripps Research InstituteLa JollaUSA

Personalised recommendations