, Volume 70, Issue 11, pp 525–535 | Cite as

Egyptian blue — Cuprorivaite a window to ancient Egyptian technology

  • H. Jaksch
  • W. Seipel
  • K. L. Weiner
  • A. El Goresy


Egyptian Blue, a multicomponent synthetic blue pigment has been recorded in ancient Egypt since the Fourth Dynasty of the Old Kingdom (2600–2480 B.C.). The pigment consisting of cuprorivaite (CaCuSi4O10) with variable amounts of wollastonite (CaSiO3), Cu-rich glass and cuprite (Cu3O) or tenorite (CuO) was prepared by melting the copper-rich ingredient with lime and desert sand. Low melting temperatures (below 742 °C) were achieved by addition of flux-like plant ashes. The high quality of the pigments collected from monuments of the Fifth Dynasty (2480–2320 B.C.) may indicate that the first manufacture was in early dynastic or perhaps predynastic eras. During the reign of Thutmosis III (18th Dynasty, 1490–1436 B.C.) probably bronze filings were first applied as starting material, thus indicating a technological innovation. This new method was employed till the Roman times.


Lime Melting Temperature Egypt Technological Innovation Variable Amount 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Abdel Razek, M., et al: Altägyptische Farbpigmente (in preparation)Google Scholar
  2. 2.
    Bayer, G., Wiedeman, H.G.: Sandoz Bull. 40, 20 (1976)Google Scholar
  3. 3.
    Bezborodov, M.A.: Chemie und Technologie der antiken und mittelalterlichen Gläser. Mainz: von Zabern 1975Google Scholar
  4. 4.
    Chaptal, M.: Ann. Chim. 70, 22 (1809)Google Scholar
  5. 5.
    Davy, H.: Phil. Trans. 105, 97 (1815)Google Scholar
  6. 6.
    Fouqué, F.: C.R. Hebd. Séances Acad. Sci. 108, 325 (1889)Google Scholar
  7. 7.
    Jaksch, H., Weiner, K.L., El Goresy, A.: Fortschr. Miner. (in press)Google Scholar
  8. 8.
    Jaksch, H.: Dissertation Heidelberg (in preparation)Google Scholar
  9. 9.
    Kullerud, G., Yoder, H.S.: Econ. Geol. 54, 533 (1959)Google Scholar
  10. 10.
    Laurie, A.P., McLintoc, W.F.P., Miles, F.D.: Proc. R. Soc. London 89, 418 (1914)Google Scholar
  11. 11.
    Lucas, A., Harris, J.R.: Ancient Egyptian Materials and Industries. London: Arnold 1962Google Scholar
  12. 12.
    Minguzzi, C.: Periodico Mineral. 4, 333 (1938)Google Scholar
  13. 13.
    Noll, W., Hangst, K.: N. Jahrb. Miner. Mh. 1975, 529Google Scholar
  14. 14.
    Noll, W.: Fortschr. Miner. 57, 203 (1979)Google Scholar
  15. 15.
    Noll, W.: N. Jahrb. Miner. Mh. 1981, 416Google Scholar
  16. 16.
    Riederer, J.: Archaeometry 16, 102 (1974)Google Scholar
  17. 17.
    Saleh, S.A., et al., in: Recent Advances in Sciences and Technology of Materials 3, p. 141. New York: Plenum Press 1974Google Scholar
  18. 18.
    Theophrastus: De lapidibus (passim)Google Scholar
  19. 19.
    Ullrich, D.: Diplomarbeit FU Berlin 1979Google Scholar
  20. 20.
    Vitruvius: De architectura libri decem, Buch VII, Kap. 11, 181 (ed. Fensterbusch). Darmstadt: Wiss. Buchges. 1981Google Scholar

Copyright information

© Springer-Verlag 1983

Authors and Affiliations

  • H. Jaksch
    • 1
  • W. Seipel
    • 2
  • K. L. Weiner
    • 3
  • A. El Goresy
    • 4
  1. 1.Mineralogisch-Petrographisches Institut der Universität HeidelbergDeutschland
  2. 2.Institut für Alte Geschichte der Universität KonstanzDeutschland
  3. 3.Institut für Kristallographie und Mineralogie der Universität MünchenDeutschland
  4. 4.Max-Planck-Institut für KernphysikHeidelberg

Personalised recommendations