Archive for History of Exact Sciences

, Volume 49, Issue 2, pp 105–134 | Cite as

On the early history of Bessel functions

  • Jacques Dutka


Bessel Function Early History 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Bernoulli, D. [1] “Observationes de seriebus recurrentibus,” Comment. Acad. Sci. Petropolis Vol III, 1728 (1732), 85–100.Google Scholar
  2. Bernoulli, D. [2] “Theoremata de oscillationibus corporum filo flexili connexorum et catenae verticaliter suspensae.” Ibid. Vol 6, 1732-33, (1738), 108–122. (See Cannon & Dostrovsky [1; Appendix] for a translation into English.)Google Scholar
  3. Bernoulli, D. [3] “Demonstrationes theorematum suorum de oscillationibus corporum filo flexili connexorum et catenae verticaliter suspensae,” Ibid Vol 7, 1734–35, (1740), 162–173. (See Cannon & Dostrovsky [1; Appendix] for a translation into English.)Google Scholar
  4. Bessel, F. W. [l] “Ueber das Dollons'sche Mittagsfernrohr und den Cary'schen Kreis,” Abhandlungen, Leipzig 1875–76, II, 19–32 Königsberger Bericht, Abh. (1815), III–XXXI.Google Scholar
  5. Bessel, F. W. [2] “Analytische Auflösung der Kepler'schen Aufgabe,” Abhandlungen der Berliner Akademie (1816–17), publ. 1819, 49–55, Repr. Abhandlungen, I, (1875), 17–20.Google Scholar
  6. Bessel, F. W. [3] “Untersuchung des Teils der planetarischen Störungen, welcher aus der Bewegung der Sonne entsteht,” Abhandlungen der Berliner Akademie (1824), publ. 1826, 1–52. Repr. Abhandlungen I, (1875), 84–109.Google Scholar
  7. Bôcher, M. [1] “Introduction to the Theory of Fourier Series,” Annals of Mathematics, Ser. 2 Vol 7 (1906), 81–152.Google Scholar
  8. Burkhardt, H. , & Esclangon, E. [1] “Interpolation Trigonometrique,” Encycl. des Sciences Mathématique, (II, 27) (1912).Google Scholar
  9. Burkhardt, H. [1] “de Entwicklungen nach oscillierenden Functionen und Integration der Differentialgleichungen der mathematischen Physik,” Jahresber. der Deutsch. Mathematiker Vereinigung, Bd 10, Heft 2 (1901-1908) 1800 pp.Google Scholar
  10. Burkhardt, H. [2] “Trigonometrische Reihen und Integrale", Encykl. der Math. Wissenschaften, Bd II, Teil 1, Hälfte II, Heft 12 (1916).Google Scholar
  11. Cannon, J. T., & Dostrovsky, S. The Evolution of Dynamics: Vibration Theory from 1687 to 1742, New York, 1981.Google Scholar
  12. Carlini, F. [1] “Richerche sulla convergensa della serie che serva alla soluzione del problema di Kepler” Milan, 1817. Translated into German by C. G. J. Jacobi in Gesammelte Werke Vol VII, 189–245, and originally published in 1850.Google Scholar
  13. Davis, H. [1] Fourier Series and Orthogonal Functions, Boston, 1963.Google Scholar
  14. Davis, P. J., & Hersh, R. [1] The Mathematical Experience, Boston, 1982.Google Scholar
  15. Euler, L. [1] “De oscillationibus fili flexilis quotcunque ponduscilis onusti, E49, 1736, Opera Omnia, Ser 2, Vol 10, 38–49.Google Scholar
  16. Euler, L. [2] “Sur la force des colonnes,” E-238, Memoires de l'Academie de Berlin T.XIII 1757, (1759), 252–282, Repr. Opera Omnia, Ser 2 Vol 17, 89–118.Google Scholar
  17. Euler, L. [3] Institutionum Calculi Integralis, Vol 2, Petropolis, 1769 Repr. in Opera Omnia, Ser 1, Vol 12.Google Scholar
  18. Euler, L. [4] “De motu vibratorio tympanorum” E302, Nov. Comm. Acad. Petropolitanae, 1778 (1780). Repr. Opera Omnia, Ser 2, Vol 17, 252–265.Google Scholar
  19. Euler, L. [5] “Determinatio onerum quae columnae gestare valent,” E508, Acta Acad. Sci. Petropolis, Vol 2, 1778, (1780), 121–145. Repr. Opera Omnia, Ser 2 Vol 17, 232–251.Google Scholar
  20. Euler, L. [6] “Examen insignis paradoxi in theoria columnarum occurentis”, E 509 Acta Acad. Petrop., 1778 [1780], Vol 1, 146–162. Repr. Opera Omnia Ser 2, Vol. 17, 252–265.Google Scholar
  21. Euler, L. [7] “De oscillationibus minimis funis libere suspensi”, E576, (1781), Opera Omnia, Ser 2, Vol 11, 307–323.Google Scholar
  22. Euler, L. [8] “De perturbatione motus chordarum ab earum pondere oriunda,” E577, (1781), Opera Omnia Ser 2, Vol 11, 324–334.Google Scholar
  23. Fourier, J. [1] Théorie analytique de la chaleur, Paris 1822. An English translation by A. Freeman with notes, appeared in 1876. A reprint of this was published in New York in 1955.Google Scholar
  24. Grattan-Guiness, I. [1] The Development of the Foundations of Mathematical Analysis from Euler to Riemann, Cambridge, (Mass), 1970.Google Scholar
  25. Grattan-Guiness, I. [2] Joseph Fourier 1768–1830, Cambridge (Mass), 1972.Google Scholar
  26. Greenhill, A. G. [1] “Determination of the greatest height consistent with stability that a vertical pole or mast can be made, and of the greatest height to which a tree of given proportions can grow,” Proceedings of the Cambridge Philosophical Society, Vol IV (1883), 65–73.Google Scholar
  27. Kepler, J. [1] Astronomia Nova..., 1609. Translated into English under the title New Astronomy by W. H. Donahue, Cambridge, 1992.Google Scholar
  28. Kline, M. [1] Mathematical Thought from Ancient to Modern Times, New York, 1972.Google Scholar
  29. Laplace, P. S. [1] Traité de Mecanique Céleste, 5 vols. Paris 1825. Repr. New York, 1969.Google Scholar
  30. Lagrange, J. L. L. [1] “Sur le problème de Kepler,” Hist. de l'Acad. R. des Sciences de Berlin, Vol XXV, 1770 (1771), 204–233. Repr in Oeuvres, Vol III, 113–126.Google Scholar
  31. Langer, R. E. [1] “Fourier's Series, The Genesis and Evolution of a Theory”, American Mathematical Monthly, Vol 54, No. 7, Part II (1947).Google Scholar
  32. Leibniz, G. W. [1] Mathematische Schriften, Halle, 1855, Repr. Hildesheim 1962. (The first reference in Watson [1; 744] to Daniel Bernoulli should be to James Bernoulli.)Google Scholar
  33. Maggi, G. A. [1] “Sulla storia delle funzioni cilindriche,” Atti della R. Accademia del Lincei, (Transunti), Anno 277, Ser 3, Vol IV, (1880), 259–263.Google Scholar
  34. Miller, W. [1], Lie Theory and Special Functions, New York, 1968.Google Scholar
  35. Poisson, S. D. [1] “Second mémoire sur la distribution de la chaleur dans les corps solides,” Journal de l'Ecole Polytechniques T. XII, Cahier 19, (1823), 249–403.Google Scholar
  36. Schlömilch, O. [1] “Üeber die Bessel'schen Function,” Zeitschrift für Mathematik und Physik, II (1857), 137–165.Google Scholar
  37. Sommerfeld, A. [1] Partial Differential Equations in Physics, New York, 1949.Google Scholar
  38. Szegö, G. [1] Orthogonal polynomials, New York, 1939.Google Scholar
  39. Taylor, B. [1] “De motu nervi tensi”, Phil. Trans. of the R. S. of London Vol. 28 (1713), 28–32.Google Scholar
  40. Truesdell, C. [1] “An essay toward a Unified Theory of Special Functions based upon the functional equation \(\frac{\partial }{{\partial z}}F\left( {z,\alpha } \right) = F\left( {z,\alpha + 1} \right)\),” Annals of Mathematics Studies, No. 18, Princeton, 1948.Google Scholar
  41. Truesdell, C. [2], “The Rational Mechanics of flexible or Elastic Bodies 1638–1788”. Euler, L. Opera Omnia, Ser 2, Vol XI, Sect. II, Zürich, 1960.Google Scholar
  42. Wagner, C. [1] “Beiträge zur Entwicklung der Bessel'schen Funktion I. Art,” Mitteilungen der naturforschenden Gesellschaft in Bern, 1894, 204–266.Google Scholar
  43. Watson, G. N. [1] A Treatise on the Theory of Bessel Functions, 2nd edition Cambridge, 1944.Google Scholar
  44. Whittaker, E. T., & Watson, G. N. [1] A Course of Modern Analysis, Cambridge, 4th edition, 1945.Google Scholar

Copyright information

© Springer-Verlag 1995

Authors and Affiliations

  • Jacques Dutka
    • 1
  1. 1.Audits & Surveys, Inc.New York

Personalised recommendations