Archive for History of Exact Sciences

, Volume 51, Issue 1, pp 29–57 | Cite as

Hidden lemmas in Euler's summation of the reciprocals of the squares

  • Mark McKinzie
  • Curtis Tuckey


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. T. M. Apostol [1973] Another elementary proof of Euler's formula for ζ (2n), American Mathematical Monthly 80 (1973) 425–431.Google Scholar
  2. T. M. Apostol [1983] A proof that Euler missed: evaluating ζ (2) the easy way, Mathematical Intelligencer 5 (1983) 59–60.Google Scholar
  3. E. T. Bell [1945] The Development of Mathematics, 2d edition, McGraw-Hill, 1945.Google Scholar
  4. H. J. M. Bos [1974/5] Differentials, higher-order differentials, and the derivative in the Leibniz ian calculus, Archive for History of Exact Sciences 14 (1974/5) 1–90.Google Scholar
  5. N. Bourbaki [1994] Elements of the History of Mathematics, Springer-Verlag, 1994. Translated from the French by J. Meldrum.Google Scholar
  6. D. Bressoud [1994] A Radical Approach to Real Analysis, Classroom Resource Materials Series 2, Mathematical Association of America, 1994.Google Scholar
  7. W. H. Bussey [1917] Origin of mathematical induction, American Mathematical Monthly 24 (1917) 199–207.Google Scholar
  8. F. Cajori [1929] A History of Mathematical Notations, volume 2, Open Court, 1929.Google Scholar
  9. W. Dunham [1990] Journey through Genius: The Great Theorems of Mathematics, John Wiley and Sons, 1990.Google Scholar
  10. W. F. Eberlein [1977] On Euler's infinite product for sine, Journal of Mathematical Analysis and Applications 58 (1977) 147–151.Google Scholar
  11. L. Euler [1730/1] De summatione innumerabilium progressionum, Commentarii academiæ scientarium Petropolitanæ 5 (1730/1) 91–105. Reprinted in Opera Omnia, series 1, volume 14, 25–41.Google Scholar
  12. L. Euler [1734] De summis serierum reciprocarum, Commentarii academiæ scientarium Petropolitanæ 7 (1734). Reprinted in Opera Omnia, series 1, volume 14, pp73–86. Translated from the Latin by J. D. Blanton, On sums of series of reciprocals, unpublished manuscript (1995). St. John Fisher College, Rochester, New York.Google Scholar
  13. L. Euler [1734b] De progressionibus harmonicis observationes, Commentarii academiæ scientarium Petropolitanæ 9 (1734). Reprinted in Opera Omnia, series 1, volume 14, 87–100.Google Scholar
  14. L. Euler [1743] De summis serierum reciprocarum ex potestatibus numerorum naturalium ortarum dissertatio altera in qua eaedem summationes ex fonte maxime diverso derivantur, Miscellanea Berolinensia 7 (1743). Reprinted in Opera Omnia, series 1, volume 14, 138–155.Google Scholar
  15. L. Euler [1748] Introductio in Analysin Infinitorum, Tomus Primus, Lausanne, 1748. Reprinted in Opera Omnia, series 1, volume 8. Translated from the Latin by J. D. Blanton, Introduction to Analysis of the Infinite, Book I, Springer-Verlag, 1988.Google Scholar
  16. W. Feller [1967] A direct proof of Stirling's formula, American Mathematical Monthly (1967) 1223–1225.Google Scholar
  17. D. P. Giesy [1972] Still another elementary proof that ∑1/k 22/6, Mathematics Magazine 45 (1972) 148–149.Google Scholar
  18. E. W. Hobson [1939] A Treatise on Plane Trigonometry, Cambridge University Press, 7th ed., 1939.Google Scholar
  19. J. E. Hofmann [1957] The History of Mathematics to 1800, Littlefield, Adams, and Co., Totowa, New Jersey, 1967. Translated from the German by F. Gaynor and H. O. Midonick.Google Scholar
  20. D. Kalman [1993] Six ways to sum a series, College Mathematics Journal 24 (1993) 402–421.Google Scholar
  21. V. G. Kanovei [1988] The correctness of Euler's method for the factorization of the sine function into an infinite product, Russian Mathematical Surveys 43 (1988) 65–94.Google Scholar
  22. H. J. Keisler [1976] Elementary Calculus: An Infinitesimal Approach, 2d edition, PWS Publishers, 1986.Google Scholar
  23. M. Kline [1972] Mathematical Thought from Ancient to Modern Times, Oxford University Press, 1972.Google Scholar
  24. N. Kretzmann [1967] Semantics, History of, Encyclopedia of Philosophy, volume 7. P. Edwards, editor in chief. Macmillan Publishing Co., New York, 1967.Google Scholar
  25. I. Lakatos [1976] Proofs and Refutations: the Logic of Mathematical Discovery, Cambridge University Press, 1976.Google Scholar
  26. D. Laugwitz [1987] Hidden lemmas in the early history of infinite series, Æquationes Mathematicæ 34 (1987) 264–276.Google Scholar
  27. D. Laugwitz [1988/9] Definite values of infinite sums: aspects of the foundations of infinitesimal analysis around 1820, Archive for History of Exact Sciences 39 (1988/9) 195–245.Google Scholar
  28. G. W. Leibniz [1674] De vera proportione circuli ad quadratum circumscriptum in numeris rationalibus expressa, Acta Eruditorum, 1682. Reprinted in G. W. Leibniz, Mathematische Schriften, C. I. Gerhardt, editor, volume 5, 118–122. (Reprint of the editions of 1849–1863.) Hildesheim 1961/2.Google Scholar
  29. W. A. J. Luxemburg [1973] What is nonstandard analysis?, American Mathematical Monthly 80 (1973) 38–67.Google Scholar
  30. Y. Matsuoka [1961] An elementary proof of the formulak = 1 1/k 2 = σ2/6, American Mathematical Monthly 68 (1961) 485–87.Google Scholar
  31. M. McKinzie and C. Tuckey [1995] Nonstandard methods in the precalculus curriculum, Developments in Nonstandard Mathematics, N. Cutland, V. Neves, A. F. Oliveira, and J. Sousa-Pinto, eds., Longman House, Harlow, Essex. Copublished in the United States by John Wiley and Sons, 1995.Google Scholar
  32. I. Papadimitriou [1973] A simple proof of the formulak = 1 k −2 = σ2/6, American Mathematical Monthly 80 (1973) 424–425.Google Scholar
  33. G. Polya [1954] Induction and Analogy in Mathematics, Princeton University Press, 1954.Google Scholar
  34. A. Robinson [1966] Non-standard Analysis, North-Holland Publishing Co., 1966.Google Scholar
  35. D. C. Russell [1991] Another Euler ian-type proof, Mathematics Magazine 64 (1991) 349.Google Scholar
  36. N. Shea [1988/9] Summing the series \(\tfrac{1}{{1^2 }} + \tfrac{1}{{2^2 }} + \tfrac{1}{{3^2 }} + {\text{ }} \ldots \), Mathematical Spectrum 21 (1988/9) 49–55.Google Scholar
  37. G. F. Simmons [1992] Calculus Gems: Brief Lives and Memorable Mathematics, McGraw-Hill, 1992.Google Scholar
  38. P. Stäckel [1907/8] Eine vergessene Abhandlung Leonhard Eulers über die Summa der Reziproken Quadrate der Natürlichen Zahlen, Bibliotheca Mathematica 83 (1907/8) 37–54. Reprinted in L. Euler Opera Omnia, series 1, volume 14, 156–176.Google Scholar
  39. K. D. Stroyan and W. A. J. Luxemburg [1976] Introduction to the Theory of Infinitesimals, Academic Press, 1976.Google Scholar
  40. D. J. Struik [1948] A Concise History of Mathematics, volume 2, Dover Publishing, 1948.Google Scholar

Copyright information

© Springer-Verlag 1997

Authors and Affiliations

  • Mark McKinzie
    • 1
  • Curtis Tuckey
    • 2
  1. 1.Department of MathematicsUniversity of WisconsinUSA
  2. 2.Information Sciences DivisionBell LaboratoriesUSA

Personalised recommendations