Bioprocess Engineering

, Volume 5, Issue 5, pp 217–224 | Cite as

Influence of some fermentation medium components on the response of a gas membrane sensor for detection of volatiles

  • A. Groboillot
  • M. N. Pons
  • J. M. Engasser


The reliability of a gas membrane sensor, used to monitor volatiles in fermentation, is studied in this work. The influence of some important components of the broth on the sensor response is investigated: mineral salts, yeast extract, antifoaming agent and solid particles. All experiments were performed with ethanol as volatile. The presence of the various components affects slightly the output signal of the sensor, but the effect is negligible. Correlations are proposed to predict the effect of mineral salts.


Waste Water Fermentation Water Management Water Pollution Yeast Extract 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Philipps, D. H.; Johnson, M. J: Measurement of dissolved oxygen in fermentations. J. Biochem. Microbiol. Technol. Eng. 3 (1961) 261–275Google Scholar
  2. 2.
    Yano, T.; Kobayashi, T.; Shimizu, S.: Silicone tubing sensor for detection of methanol. J Ferment. Technol. 56 (1978) 421–427Google Scholar
  3. 3.
    Dairaku, K.; Yamane, T.: Use of the porous teflon tubing method to measure gaseous or volatile substances dissolved in fermentation liquids. Biotechnol. & Bioeng. 21 (1979) 1671–1676Google Scholar
  4. 4.
    Dairaku, K.; Yamasaki, K.; Shioya, S.; Takamatsu, T.: Maximum production in a bakers' yeast fed-batch culture by a tubing method. Biotechnol. & Bioeng. 23 (1981) 2069Google Scholar
  5. 5.
    Dairaku, K.; Izumoto, E.; Morikawa, H.; Shioya, S.; Takamatsu, T.: An advanced micro-computer coupled control system in a bakers' yeast fed-batch culture using a tubing method. J. Ferment. Technol. 61 (1983) 189–196Google Scholar
  6. 6.
    Yamane, T.; Matsuda, M.; Sada, E.: Application of porous teflon tubing method to automatic fed-batch culture of microorganisms. I. Mass transfer through porous teflon tubing. Biotechnol. & Bioeng. 23 (1981) 2493–2507Google Scholar
  7. 7.
    Yamane, T.; Matsuda, M.; Sada, E.: Application of porous teflon tubing method to automatic fed-batch culture of microorganisms. II. Automatic constant-value control of fed substrate (ethanol) concentration in semi-batch culture of yeast. Biotechnol. & Bioeng. 23 (1981) 2509–2524Google Scholar
  8. 8.
    Pons, M. N.; Ducouret, P.; Engasser, J. M.: Mass transfer characteristics of hydrophobic tubing membrane sensors. Biotechnol. Lett. 8 (1986) 407Google Scholar
  9. 9.
    Ninow, J; Groboillot, A.; Marc, I.; Pons, M. N.: Studies on the effect of some physico-chemical parameters on the response of an hydrophobic microporous membrane sensor. In: Van der Meer, N. R. R.; Luyben, K. Ch. A. M. (Eds.): Proc. 4th Eur. Congr. on Biotechnol. Amsterdam: Elsevier Science Publishers (1987) 145–148Google Scholar
  10. 10.
    Ninow, J.: Properties of PTFE membrane sensors for the detection of volatiles components. Application to on-line monitoring of fermentation processes. — Thesis INPL (Nancy) France (1989)Google Scholar
  11. 11.
    Lee, J. H.; Woodard, J. C.; Pagan, R. J.; Rogers, P. L.: Evaluation of semi-conductor gas sensor system for on-line ethanol estimation. Biotechnol. Lett. 3 (1981) 251–256Google Scholar
  12. 12.
    Kempe, E.; Schallenberger, W.: Measuring and control of fermentation processes: part 1. Proc. Biochem. dec. (1983)Google Scholar
  13. 13.
    Puhar, E.; Guerra, L. H.; Lorencez, I.; Fiechter, A.: A combination of methods for the on-line determination of alcohols in microbial cultures. Eur. J. Appl. Microbiol. Biotechnol 9 (1980) 227–233Google Scholar
  14. 14.
    Mandenius, C. F.; Mattiason, B.: Improved membrane gas sensor systems for on-line analysis of ethanol and other volatile organic compounds in fermentation media. Eur. J Appl. Microbiol. Biotechnol. 18 (1983) 197–200Google Scholar
  15. 15.
    Groot, W. J; Van Denoever, C. E.; Kossen, N. W. F.: Pervaporation for simultaneous product recovery in the butanol/isopropanol batch fermentation. Biotechnol. Lett. 6 (1984) 709–714Google Scholar
  16. 16.
    Axelson, J. P.; Mandenius, C. F.; Holst, O.; Hagander, P.; Mattiason, B.: Experience in using an ethanol sensor to control molasses feed-rates in bakers' yeast production. Bioproc. Eng. 3 (1988) 1–9Google Scholar
  17. 17.
    Pons, M. N.; Engasser, J. M.: Monitoring of alcoholic fed-batch cultures by gas chromatography via a gas-permeable membrane. An. Chim. Act. 213 (1988) 231–236Google Scholar
  18. 18.
    Groboillot, A.; Pons, M. N.; Engasser, J. M.: Monitoring of volatiles in alcoholic fermentations on molasses via a gas membrane sensors. Appl. Microbiol. Biotechnol, 32 (1989) 32–37Google Scholar
  19. 19.
    Maiorella, B. L.; Wilke, C. R.; Blanch, H. W.: Ethanol volatility in fermentation systems. Salt and metabolite effects. Ind. Eng. Chem. Fundam. 23 (1984) 332–337Google Scholar
  20. 20.
    Sumitomo Electric Industries Ltd. Leaflet n∘ PF104Google Scholar
  21. 21.
    Janszuk, B.; Chibowski, E.; Wojcik, W.: The influence of n-alcohols on the wettability of hydrophobic solids. Powder Technology 45 (1985) 1–6Google Scholar
  22. 22.
    Popovic, M.; Niebelschütz, H.; Reuss, M.: Oxygen solubilities in fermentation fluids. Eur. J. Appl. Microbiol. Biotechnol. 8 (1978) 1–15Google Scholar
  23. 23.
    Comberbach, M.; Scharer, J. M.; Moo-Young, M.: Application of the headspace gas chromatographic technique for continuous monitoring of the acetone-butanol-ethanol fermentation. Enzyme Microb. Technol. 7 (1985) 543–548Google Scholar
  24. 24.
    Hoq, M. M.; Yamane, T.; Shimizu, S.; Funada, T.; Ishida, S.: Continuous hydrolysis of olive oil by lipase in microporous hydrophobic membrane reactor. JAOCS 62 (1985) 1016–1021Google Scholar

Copyright information

© Springer-Verlag 1990

Authors and Affiliations

  • A. Groboillot
    • 1
  • M. N. Pons
    • 1
  • J. M. Engasser
    • 1
  1. 1.Laboratoire des Sciences du Génie ChimiqueCNRS-ENSIC-ENSAIA-INPLNancy CedexFrance

Personalised recommendations