Bioprocess Engineering

, Volume 5, Issue 5, pp 203–216 | Cite as

Butanol recovery from fermentations by liquid-liquid extraction and membrane solvent extraction

  • W. J. Groot
  • H. S. Soedjak
  • P. B. Donck
  • R. G. J. M. van der Lans
  • K. Ch. A. M. Luyben
  • J. M. K. Timmer


Extraction can successfully be used for in-situ alcohol recovery in butanol fermentations to increase the substrate conversion. An advantage of extraction over other recovery methods may be the high capacity of the solvent and the high selectivity of the alcohol/water separation. Extraction, however, is a comprehensive operation, and the design of an extraction apparatus can be complex. The aim of this study is to assess the practical applicability of liquid-liquid extraction and membrane solvent extraction in butanol fermentations. In this view various aspects of extraction processes were investigated.

Thirty-six chemicals were tested for the distribution coefficient for butanol, the selectivity of alcohol/water separation and the toxicity towards Clostridia. Convenient extractants were found in the group of esters with high molar mass.

Liquid-liquid extraction was carried out in a stirred fermenter and a spray column. The formation of emulsions and the fouling of the solvent in a fermentation broth causes problems with the operation of this type of equipment. With membrane solvent extraction, in which the solvent is separated from the broth by a membrane, a dispersion-free extraction is possible, leading to an easy operation of the equipment. In this case the mass transfer in the membrane becomes important.

With membrane solvent extraction the development of a process is emphasized in which the extraction characteristics of the solvent are combined with the property of silicone rubber membranes to separate butanol from water. In the case of apolar solvents with a high molar mass, the characteristics of the membrane process are determined completely by the solvent. In the case of polar solvents (e.g. ethylene glycol), the permselectivity of the membrane can profitably be used. This concept leads to a novel type of extraction process in which alcohol is extracted with a water-soluble solvent via a hydrophobic semipermeable membrane. This extraction process has been investigated for the recovery of butanol and ethanol from water. A major drawback in all processes with membrane solvent extraction was the permeation of part of the solvent to the aqueous phase.

The extraction processes were coupled to batch, fed batch and continuous butanol fermentations to affirm the applicability of the recovery techniques in the actual process. In the batch and fed batch fermentations a three-fold increase in the substrate consumption could be achieved, in the continuous fermentation about 30% increase.


Fermentation Butanol Extraction Process Batch Fermentation Semipermeable Membrane 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Gibbs, D. F.: The rise and fall (... and rise?) of acetone/butanol fermentations. Trends in Biotechnology, 1 (1983) 12–15Google Scholar
  2. 2.
    Griffith, W. L.; Compere, A. L.; Googin, J. M.: Novel neutral solvents fermentations. Dev. Ind. Microbiol. 24 (1983) 347–352Google Scholar
  3. 3.
    Compere, A. L.; Griffith, W. L.; Googin, J. M.: Integrated schemes for the production and separation of neutral solvents. Dev. Ind. Microbiol. 25 (1984) 795–800Google Scholar
  4. 4.
    Ishii, S.; Taya, M.; Kobayashi, T.: Production of butanol by Clostridium acetobutylicum in extractive fermentation system. J Chem. Eng. Jpn. 18 (1985) 125–130Google Scholar
  5. 5.
    Taya, M.; Ishii, S.; Kobayashi, T: Monitoring and control for extractive fermentation of Clostridium acetobutylicum. J. Ferm. Technol. 63 (1985) 181–187Google Scholar
  6. 6.
    Dadgar, A. M.; Foutch, G. L.: Evaluation of solvents for the recovery of Clostridium fermentation products by liquid-liquid extraction. Biotechnol. Bioeng. Symp. Ser. 15 (1985) 611–620Google Scholar
  7. 7.
    Phillips, J. A.; Humphrey, A. E.: Process technology for the biological conversion of lignocellulosic materials to fermentable sugars and alcohols. In: Soltes, E. J. (Ed.): Wood and Agricultural Residues: Research on Use for Feed, Fuels and Chemicals, pp. 503–528. New York: Academic Press 1983Google Scholar
  8. 8.
    Roffler, S. R.; Blanch, H. W.; Wilke, C. R.: In-situ recovery of butanol during fermentation. Part 1: Batch extractive fermentation. Bioprocess Engineering 2 (1987) 1–12Google Scholar
  9. 9.
    Roffler, S. R.; Blanch, H. W.; Wilke, C. R.: In-situ recovery of butanol during fermentation. Part 2: Fed-batch extractive fermentation. Bioprocess Engineering 2 (1987) 181–190Google Scholar
  10. 10.
    Plaine, M. J; Smith, B. R.: Toxicity of organic extraction reagents to anaerobic bacteria. Biotechnol. Bioeng. 25 (1983) 1251–1265Google Scholar
  11. 11.
    Brink, L. E. S.; Tramper, J.: Optimization of organic solvent multiphase biocatalysis. Biotechnol. Bioeng. 27 (1985) 1258–1269Google Scholar
  12. 12.
    Bar, R.: Effect of interphase mixing on a water-organic solvent two-liquid phase microbial system: Ethanol fermentation. J. Chem. Tech. Biotechnol. 43 (1988) 49–62Google Scholar
  13. 13.
    Daugulis, A. J.; Swaine, D. E.; Kollerup, F.; Groom, C. A.: Extractive fermentation — Integrated reaction and product recovery. Biotechnol. Lett. 9 (1987) 425–430Google Scholar
  14. 14.
    Eckert, G.; Schügerl, K.: Kontinuierliche Aceton-Butanol-Fermentation mit direkter Produktentfernung. Chem. Ing. Techn. 59 (1987) 958–959Google Scholar
  15. 15.
    Gianetto, A.; Ruggeri, B.; Specchia, V.; Sassi, G.; Forna, R.: Continuous extraction loop reactor (CELR): alcoholic fermentation by fluidized entrapped biomass. Chem. Eng. Sci. 43 (1988) 1891–1896Google Scholar
  16. 16.
    Roffler, S. R.; Blanch, H. W; Wilke, C. R.: Extractive fermentation of acetone and butanol: Process design and economic evaluation. Biotechnol. Prog. 3 (1987) 131–140Google Scholar
  17. 17.
    Matsumura, M.; Märkl, H.: Elimination of ethanol inhibition by perstraction. Biotechnol. Bioeng. 28 (1986) 534–541Google Scholar
  18. 18.
    Frank, G. T.; Sirkar, K. K.: Alcohol production by yeast fermentation and membrane extraction. Biotechnol. Bioeng. Symp. Ser. 15 (1985) 621–632Google Scholar
  19. 19.
    Cho, T.; Shuler, M. L.: Multi membrane reactor for extractive fermentation. Biotechnol. Prog. 2 (1986) 53–60Google Scholar
  20. 20.
    Groot, W. J.; van den Oever, C. E.; Kossen, N. W. F.: Pervaporation for simultaneous product recovery in the butanol/isopropanol batch fermentation. Biotechnol. Lett. 6 (1984) 709–714Google Scholar
  21. 21.
    Larrayoz, M. A.; Puigjaner, L.: Study of butanol extraction through pervaporation in acetobutylic fermentation. Biotechnol. Bioeng. 30 (1987) 692–969Google Scholar
  22. 22.
    Schoutens, G. H.; Nieuwenhuizen, M. C. H.; Kossen, N. W. F.: Continuous butanol production from whey permeate with immobilized Clostridium beyerinckii LMD 27.6. Appl. Microbiol. Biotechnol. 23 (1985) 282–286Google Scholar
  23. 23.
    Laane, C.; Boeren, S.; Vos, K.: On optimizing organic solvents in multi-liquid-phase biocatalysis. Trends in Biotechnology 3 (1985) 251–252Google Scholar
  24. 24.
    Barton, A. F. M.: Handbook of solubility parameters and other cohesion parameters CRC Press 1983Google Scholar
  25. 25.
    Perry, R. H.; Green, D. (Eds.): Perry's Chemical Engineers Handbook, 6th ed., McGraw-Hill Book Company 1984Google Scholar
  26. 26.
    Matsumura, M.; Kataoka, H.: Separation of dilute aqueous butanol and acetone solutions by pervaporation through liquid membranes. Biotechnol. Bioeng. 30 (1987) 887–895Google Scholar
  27. 27.
    Ruiz, F.; Gomis, V.; Botella, R. F.: Extraction of ethanol from aqueous solution. 1. Solvent less volatile than ethanol: 2-ethylhexanol. Ind. Eng. Chem. Res. 26 (1987) 696–699Google Scholar
  28. 28.
    Lee, F.-M.; Pahl, R. H.: Solvent screening study and conceptual extractive distillation process to produce anhydrous ethanol from fermentation broth. Ind. Eng. Chem. Process Des. Dev. 24 (1985) 168–172Google Scholar
  29. 29.
    Lynn, S.; Hanson, D.: Multieffect extractive distillation for separating aqueous azeotropes. Ing. Eng. Chem. Process Des. Dev. 25 (1986) 936–941Google Scholar
  30. 30.
    Roddy, J. W.: Distribution of ethanol-water mixtures to organic liquids. Ind. Eng. Chem. Process Des. Dev. 20 (1981) 104–108Google Scholar
  31. 31.
    Munson, C. L.; King, C. J: Factors influencing solvent extraction of ethanol from aqueous solutions. Ind. Eng. Chem. Process Des. Dev. 23 (1984) 109–115Google Scholar
  32. 32.
    Strobel, M. K.; Bader, J. B.: Economic evaluation of neutralsolvents fermentation product separation. Report ORNL/MIT- 330 1981Google Scholar
  33. 33.
    Gmehling, J.; Oncken, U.; Arlt, W. (Eds.): Vapor-liquid equilibrium data collection. Dechema Chemistry Data Series, Vol. I, Part 1a. Frankfurt am Main: Dechema 1977Google Scholar
  34. 34.
    Schoutens, G. H.; Groot, W. J.: Economic feasibility of the production of isopropanol-butanol-ethanol fuels from whey permeate. Proc. Biochem. 20 (1985) 117–121Google Scholar

Copyright information

© Springer-Verlag 1990

Authors and Affiliations

  • W. J. Groot
    • 1
  • H. S. Soedjak
    • 1
  • P. B. Donck
    • 1
  • R. G. J. M. van der Lans
    • 1
  • K. Ch. A. M. Luyben
    • 1
  • J. M. K. Timmer
    • 2
  1. 1.Kluyver Laboratory of BiotechnologyBC Delft
  2. 2.Netherlands Institute for Dairy Research (NIZO)ZB EdeThe Netherlands

Personalised recommendations