Archive for Rational Mechanics and Analysis

, Volume 117, Issue 4, pp 349–387 | Cite as

Hyperbolic phenomena in a strongly degenerate parabolic equation

  • Michiel Bertsch
  • Roberta Dal Passo


We consider the equation u t =(ϕ(u) ψ (u x )) x , where ϕ>0 and where ψ is a strictly increasing function with lims→∞ψ=ψ<∞. We solve the associated Cauchy problem for an increasing initial function, and discuss to what extent the solution behaves qualitatively like solutions of the first-order conservation law u t (ϕ(u)) x . Equations of this type arise, for example, in the theory of phase transitions where the corresponding free-energy functional has a linear growth rate with respect to the gradient.


Growth Rate Neural Network Phase Transition Complex System Cauchy Problem 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    H. W. Alt & S. Luckhaus, Quasilinear elliptic-parabolic differential equations, Math. Zeitschr. 183, (1983), 311–341.Google Scholar
  2. 2.
    G. Anzellotti, On the minima of functionals with linear growth, Rend. Sem. Mat. Univ. Padova 75, (1986), 31–110.Google Scholar
  3. 3.
    D. G. Aronson, The porous medium equation, in: Some problems on nonlinear diffusion (ed.: A. Fasano & M. Primicerio) Springer Lect. Notes Math. 1224 (1986).Google Scholar
  4. 4.
    F. V. Atkinson, L. A. Peletier & J. Serrin, Ground states for the prescriped mean curvature equation: The supercritical case, in: Nonlinear Diffusion Equation and their Equilibrium States, I (Eds: W.-M. Ni, L. A. Peletier & J. B. Serrin) Math. Sciences Research Inst. Publications 12, Springer (1988), 51–74.Google Scholar
  5. 5.
    M. Bertsch & J. Hulshof, Regularity results for an elliptic-parabolic free-boundary problem, Trans. Amer. Math. Soc. 297 (1986), 337–350.Google Scholar
  6. 6.
    M. Bertsch & L. A. Peletier, A Positivity property of solutions of nonlinear diffusion equations, J. Diff. Eqs. 53, (1984), 30–47.Google Scholar
  7. 7.
    E. Di Benedetto & A. Friedman, Hölder estimates for nonlinear degenerate parabolic systems, J. reine angew. Math. 357, (1985), 1–22.Google Scholar
  8. 8.
    E. Di Benedetto & R. Gariepy, Local behavior of solutions of an elliptic-parabolic equation, Arch. Rational Mech. Anal. 97 (1987), 1–18.Google Scholar
  9. 9.
    C. J. Van Duyn & L. A. Peletier, Nonstationary filtration in partially saturated porous media, Arch. Rational Mech. Anal. 78 (1982), 173–198.Google Scholar
  10. 10.
    B. Franchi, E. Lanconelli & J. Serrin, Existence and uniqueness of ground state solutions of quasilinear elliptic equations, in: Nonlinear Diffusion Equations and Their Equilibrium States, I (Eds. W.-M. Ni, L. A. Peletier & J. B. Serrin) Math. Sciences Research Inst. Publications 12, Springer (1988), 187–252.Google Scholar
  11. 11.
    M. Giaquinta, G. Modica, & J. Souček, Functionals with linear growth in the calculus of variations — I, Comment. Math. Univ. Carolinae 20 (1979), 143–156.Google Scholar
  12. 12.
    M. Giaquinta, G. Modica, & J. Souček, Functionals with linear growth in the calculus of variations — II, Comment. Math. Univ. Carolinae 20 (1979), 161–176.Google Scholar
  13. 13.
    J. Hulshof, Thesis, Univ. of Leiden (1986).Google Scholar
  14. 14.
    J. Hulshof, An elliptic-parabolic free boundary problem: continuity of the interface, Proc. Royal Soc. Edinburgh, 106 A, (1987), 327–339.Google Scholar
  15. 15.
    J. Hulshof & L. A. Peletier, An elliptic-parabolic free boundary problem, Nonlin. Anal. TMA 10 (1986), 1327–1346.Google Scholar
  16. 16.
    A. V. Ivanov, Quasilinear degenerate and nonuniformly elliptic and parabolic equations of second order, Proc. Steklov Inst. Math. Issue 1, Amer. Math. Soc. (1984).Google Scholar
  17. 17.
    A. S. Kalashnikov, On equations of the nonstationary-filtration type in which the perturbation is propagated at infinite velocity, Vestnik Mosk. Univ. Matem. 27 (1972), 45–49.Google Scholar
  18. 18.
    O. A. Ladyzhenskaya, N. A. Solonnikov & N. N. Ural'tseva, Linear and quasilinear equations of parabolic type, Amer. Math. Soc. (1968).Google Scholar
  19. 19.
    O. N. Oleinik, A. S. Kalashnikov & Chzou Yui-Lin, The Cauchy problem and boundary problems for equations of the type of nonstationary filtration, Izv. Akad. Nauk. SSSR, ser. mat. 22 (1958), 667–704.Google Scholar
  20. 20.
    L. A. Peletier, A necessary and sufficient condition for the existence of an interface in flows through porous media, Arch. Rational Mech. Anal., 56 (1974), 183–190.Google Scholar
  21. 21.
    P. Rosenau, Free energy functional at the high gradient limit, Phys. Review A, to appear.Google Scholar
  22. 22.
    J. Serrin, The problem of Dirichlet for quasilinear elliptic differential equations with many independent variables, Phil. Trans. Roy. Soc. London A 264 (1969), 413–496.Google Scholar
  23. 23.
    J. Smoller, Shock Waves and Reaction-Diffusion Equations, Springer (1980).Google Scholar
  24. 24.
    P. Blanc, Thesis, Univ. of Lausanne (1989).Google Scholar
  25. 25.
    D. S. Cohen, T. S. Hagan, R. L. Northcut & P. Rosenau, Delayed diffusion due to flux limitation, Physics Letters (in press).Google Scholar
  26. 26.
    R. Dal Passo, Uniqueness of the entropy solution of a strongly degenerate parabolic equation, preprint.Google Scholar

Copyright information

© Springer-Verlag 1992

Authors and Affiliations

  • Michiel Bertsch
    • 1
    • 2
  • Roberta Dal Passo
    • 1
  1. 1.Dipartimento di Matematica IIUniversitá di Roma “Tor Vergata”Rome
  2. 2.Istituto per le Applicazioni del CalcoloRome

Personalised recommendations