Roux's archives of developmental biology

, Volume 195, Issue 5, pp 302–317 | Cite as

Maternal-effect mutations altering the anterior-posterior pattern of the Drosophila embryo

  • Trudi Schüpbach
  • Eric Wieschaus


Mutations in seven different maternal-effect loci on the second chromosome of Drosophila melanogaster all cause alterations in the anterior-posterior pattern of the embryo. Mutations in torso (tor) and trunk (trk) delete the anterior- and posterior-most structures of the embryo. At the same time they shift cellular fates which are normally found in the subterminal regions of the embryo towards the poles. Mutations in vasa (vas), valois (vls), staufen (stau) and tudor (tud) cause two embryonic defects. For one they result in absence of polar plasm, polar granules and pole cells in all eggs produced by mutant females. Secondly, embryos developing inside such eggs show deletions of abdominal segments. In addition, embryos derived from staufen mothers lack anterior head structures, embryos derived from valois mothers frequently fail to cellularize properly. Mutations in exuperantia (exu) cause deletions of anterior head structures, similar to torso, trunk and staufen. However in exu, these head structures are replaced by an inverted posterior end which comprises posterior midgut, proctodeal region, and often malpighian tubules.

The effects of all mutations can be traced back to the beginning stages of gastrulation, indicating that the alterations in cellular fates have probably taken place by that time. Analysis of embryos derived from double mutant mothers suggests that these three phenotypic groups of mutants interfere with three different, independent pathways. All three pathways seem to act additively on the system which specifies anterior-posterior cellular fates within the egg.

Key words

Drosophila Maternal effect Mutations Pattern formation 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Anderson KV, Nüsslein-Volhard C (1984) Information for the dorsal-ventral axis is stored as maternal RNA. Nature 311:223–227Google Scholar
  2. Anderson KV, Jürgens G, Nüsslein-Volhard C (1985) The establishment of dorsal-ventral polarity in the Drosophila embyo: genetic studies on the role of the Toll gene product. Cell 42:779–789Google Scholar
  3. Ashburner M, Angel P, Detwiler C, Faithful J, Gubb D, Harrington G, Littlewood J, Tsubota S, Velissariou V, Walker V (1981) New Mutants. Dros Inf Serv 56:186Google Scholar
  4. Ashburner M, Tsubota S, Woodruff RC (1982) The genetics of a small chromosome region of Drosophila melanogaster containing the structural gene for alcohol dehydrogenase. IV: Scutoid, and antimorphic mutation. Genetics 102:401–420Google Scholar
  5. Boswell RE, Mahowald AP (1985) Tudor, a gene required for assembly of the germ plasm in Drosophila melanogaster. Cell 43:97–104Google Scholar
  6. Bull A (1966) Bicaudal, a genetic factor which affects the polarity of the embryo of Drosophila melanogaster. J Exp Zool 161:221–242Google Scholar
  7. Counce SJ, Ede DA (1957) The effect in embryogenesis of a sex-linked female sterility factor in Drosophila melanogaster. J Embryol Exp Morphol 5:404–421Google Scholar
  8. Eichenberger-Glinz S (1979) Intercellular junctions during development and in tissue cultures of Drosophila melanogaster: An electronmicroscopic study. Wilhelm Roux's Arch 186:333–349Google Scholar
  9. Fielding CJ (1967) Developmental genetics of the mutant grandchildless of D. subobscura. J Embryol Exp Morphol 17:375–384Google Scholar
  10. French V, Bryant PJ, Bryant SV (1976) Pattern regulation in epimorphic fields. Science 193:969–981Google Scholar
  11. Gans M, Audit C, Masson M (1975) Isolation and characterization of sex-linked female sterile mutants in Drosophila melanogaster. Genetics 81:683–704Google Scholar
  12. Garcia-Bellido A (1975) Genetic control of wing disc development in Drosophila. In: Cell patterning. Ciba Foundation Symposium 29:161–183Google Scholar
  13. Gergen JP, Wieschaus EF (1985) The localized requirements for a gene affecting segmentation in Drosophila. Analysis of larvae mosaic for runt. Dev Biol 109:321–335Google Scholar
  14. Gubb D, Garcia-Bellido A (1982) A genetic analysis of the determination of cuticular polarity during development in Drosophila melanogaster. J Embryol Exp Morphol 68:37–57Google Scholar
  15. Hafen E, Kuroiwa A, Gehring WJ (1984) Spatial distribution of transcripts from the segmentation gene fushi tarazu during Drosophila development. Cell 37:833–841Google Scholar
  16. Hartenstein V, Technau GM, Campos-Ortega JA (1985) Fate mapping in wild type Drosophila melanogaster. III A fate map of the blastoderm. Wilhelm Roux's Arch 194:213–216Google Scholar
  17. Kalthoff K, Sander K (1968) Der Entwicklungsgang der Missbildung “Doppelabdomen” im partiell UV-bestrahlten Ei von Smittia pathenogenetica (Dipt., Chironomidae). Wilhelm Roux's Arch 161:129–146Google Scholar
  18. Kalthoff K (1979) Analysis of a morphogenetic determinant in an insect embryo (Smittia spec., Chironomidae, Diptera). In: Subtelny S, Koenigsberg JR (eds) Determinants of spatial organization. Academic Press, New York, pp 97–126Google Scholar
  19. Lawrence PA, Morata G (1977) The early development of mesothoracic compartments in Drosophila. An analysis of cell lineage and fate mapping and an assessment of methods. Dev Biol 56:40–51Google Scholar
  20. Lewis EB (1963) Genes and developmental pathways. Am Zool 3:33–56Google Scholar
  21. Lewis EB (1978) A gene complex controlling segmentation in Drosophila. Nature 276:565–570Google Scholar
  22. Lohs-Schardin M, Sander K (1976) A dicephalic monster embryo of Drosophila melanogaster. Wilhelm Roux's Arch 179:159–162Google Scholar
  23. Lohs-Schardin M (1982) Dicephalic — a Drosophila mutant affecting polarity in follicle organization and embryonic patterning. Wilhelm Roux's Arch 191:28–36Google Scholar
  24. Lohs-Schardin M, Cremer C, Nüsslein-Volhard C (1979) A fate map for the larval epidermis of Drosophila melanogaster. Localized cuticle defects following irradiation of the blastoderm with an ultraviolet laser microbeam. Dev Biol 73:239–255Google Scholar
  25. Mackay WJ, O'Donnell JM (1983) A genetic analysis of the pteridine biosynthetic enzyme, guanosine triphosphate cyclohydrolase, in Drosophila melanogaster. Genetics 105:35–53Google Scholar
  26. Mahowald AP (1962) Fine structure of pole cells and polar granules in Drosophila melanogaster. J Exp Zool 151:211–215Google Scholar
  27. Mariol MC (1981) Genetic and developmental studies of a new grandchildless mutant of Drosophila melanogaster. Mol Gen Genet 181:505–511Google Scholar
  28. Meinhardt H (1977) A model of pattern formation in insect embryogenesis. J Cell Sci 23:117–139Google Scholar
  29. Mohler J, Wieschaus E (1986) Dominant maternal effect mutations of Drosophila melanogaster causing the production of double abdomen embryos. Genetics (in press)Google Scholar
  30. Niki Y (1984) Developmental analysis of the grandchildless (gs(1) N26) mutation in Drosophila melanogaster: Abnormal cleavage pattern and defects in pole cell formation. Dev Biol 103:182–189Google Scholar
  31. Niki Y, Okada M (1981) Isolation and characterization of grandchildless-like mutants in Drosophila melanogaster. Wilhelm Roux's Arch 190:1–10Google Scholar
  32. Nüsslein-Volhard C (1977) Genetic analysis of pattern-formation in the embryo of Drosophila melanogaster: Characterization of the maternal-effect mutant bicaudal. Wilhelm Roux's Arch 183:249–268Google Scholar
  33. Nüsslein-Volhard C (1979) Maternal effect mutations that alter the spatial coordinates of the embryo of Drosophila melanogaster. In: Subtelny S, Koenigsberg IR (eds) Determinants of spatial organization. Academic Press, New York, pp 185–211Google Scholar
  34. Nüsslein-Volhard C, Wieschaus E (1980) Mutations affecting segment number and polarity in Drosophila. Nature 287:795–801Google Scholar
  35. Nüsslein-Volhard C, Lohs-Schardin M, Sander K, Cremer C (1980) A dorso-ventral shift of embryonic primordia in a new maternal-effect mutant of Drosophila melanogaster. Nature 283:474–476Google Scholar
  36. Nüsslein-Volhard C, Wieschaus E, Kluding H (1984) Mutations affecting the pattern of the larval cuticle in Drosophila melanogaster. I. Zygotic loci on the second chromosome. Wilhelm Roux's Arch 193:267–282Google Scholar
  37. Poulson DF (1950) Histogenesis, organogenesis and differentiation in the embryo of Drosophila melanogaster, Meigen. In: Demerec M (ed) Biology of Drosophila. Wiley, New York, pp 168–274Google Scholar
  38. Sander K (1959) Analyse des ooplasmatischen Reaktionssystems von Euscelis plebejus Fall. (Cicadina) durch Isolieren und Kombinieren von Keimteilen. I. Die Differenzierungsleistungen vorderer und hinterer Eiteile. Wilhelm Roux's Arch (Entw Mech Org) 151:430–497Google Scholar
  39. Sander K (1960) Analyse des ooplasmatischen Reaktionssystems von Euscelis plebejus Fall. (Cicadina) durch Isolieren und Kombinieren von Keimteilen. II. Die Differenzierungsleistungen nach Verlagern von Hinterpolmaterial. Wilhelm Roux's Arch (Entw Mech Org) 151:660–707Google Scholar
  40. Sander K (1976) Specification of the basic body pattern in insect embryogenesis. Adv Insect Physiol 12:125–238Google Scholar
  41. Schubiger G, Moseley RC, Wood WJ (1977) Interaction of different egg parts in determination of different body regions in Drosophila melanogaster. Proc Natl Acad Sci [USA] 74:2050–2053Google Scholar
  42. Schüpbach T, Wieschaus E (1986) Germline autonomy of maternal-effect mutations altering the embryonic body pattern of Drosophila. Dev Biol (in press)Google Scholar
  43. Simcox AA, Sang JH (1983) When does determination occur in the Drosophila embryo. Dev Biol 97:212–221Google Scholar
  44. Struhl G (1981) A blastoderm fate map of compartments and segments of the Drosophila head. Dev Biol 84:386–396Google Scholar
  45. Thierry-Mieg D (1976) Study of a temperature sensitive mutant grandchildless-like in Drosophila melanogaster. J Microsc Biol Cell 25:1–6Google Scholar
  46. Thierry-Mieg D (1982) Paralog, a control mutant in Drosophila melanogaster. Genetics 100:209–237Google Scholar
  47. Turner FR, Mahowald AP (1979) Scanning electron microscopy of Drosophila melanogaster embryogenesis. III. Formation of the head and caudal segments. Dev Biol 68:96–109Google Scholar
  48. Underwood EM, Turner FR, Mahowald AP (1980) Analysis of cell movements of fate mapping during early embryogenesis in Drosophila melanogaster. Dev Biol 74:286–301Google Scholar
  49. Van der Meer J (1977) Optical clean and permanent wholemount preparation for phase contrast microscopy of cuticular structures of insect larvae. Drosophila Inform Serv 52:160Google Scholar
  50. Van der Meer J (1984) Parameters influencing reversal of segment sequence in posterior egg fragments of Callosobruchus (Coleoptera). Wilhelm Roux's Arch 193:339–356Google Scholar
  51. Wieschaus E, Gehring W (1976) Clonal analysis of primordial disc cells in the early embryo of Drosophila melanogaster. Dev Biol 50:249–263Google Scholar
  52. Wieschaus E, Nüsslein-Volhard C, Kluding H (1984) Krüppel, a gene whose activity is required early in the zygotic genome for normal embryonic segmentation. Dev Biol 104:172–186Google Scholar
  53. Wright TRF (1970) The genetics of embryogenesis in Drosophila. Adv Gent 15:262–395Google Scholar
  54. Wright TRF, Bewley GC, Sherald AF (1976) The genetics of dopa decarboxylase in Drosophila melanogaster. II. Isolation and characterization of dopa decarboxylase-deficient mutants and their relationship to the alpha-methyl-dopa-hypersensitive-mutants. Genetics 84:287–310Google Scholar
  55. Zalokar M, Erk I (1977) Phase-partition fixation and staining of Drosophila eggs. Stain Technol 52:89–95Google Scholar

Copyright information

© Springer-Verlag 1986

Authors and Affiliations

  • Trudi Schüpbach
    • 1
  • Eric Wieschaus
    • 1
  1. 1.Biology DepartmentPrinceton UniversityPrincetonUSA

Personalised recommendations