Advertisement

Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

Sentential constants in R and R⌝

Abstract

In this paper, we shall confine ourselves to the study of sentential constants in the system R of relevant implication.

In dealing with the behaviour of the sentential constants in R, we shall think of R itself as presented in three stages, depending on the level of truth-functional involvement.

This is a preview of subscription content, log in to check access.

References

  1. [1]

    A. R. Anderson and N. D. Belnap Jr., Entailment. The Logic of Relevance and Necessity, Vol. 1, Princeton University Press, Princeton, 1975.

  2. [2]

    A. Church, The weak theory of implication, Kontrolliertes Denken. Untersuchungen zum Logikkalkül und der Logik der Einzelwissenschaften, ed. Menue, Wilhelmy and Angsil, Komissions-Verlag Karl Alber, Munich, 1951, pp. 22–37.

  3. [3]

    W. Ackermann, Begründung einer strengen Implikation, Journal of Symbolic Logic 21 (1956), pp. 113–128.

  4. [4]

    R. K. Meyer, A Boolean valued Semantics for R, Typescript, Australian. National University, 1976.

  5. [5]

    R. K. Meyer, Inflationism, entailment and negation, Truth, Syntax and Modality, H. Leblanc (ed.), North-Holland, Amsterdam, 1973, pp. 168–198.

  6. [6]

    R. K. Meyer and R. Routley, Classical relevant logics II, Studia Logica 33 (1974), pp. 183–194.

  7. [7]

    R. K. Meyer, Topics on Modal and Many-Valued Logics, Doctoral Dissertation, University of Pittsburgh, 1966.

  8. [8]

    N. D. Belnap, Jr., Intensional models for first degree formulas, Journal of Symbolic Logic 32 (1967), pp. 1–22.

  9. [9]

    R. K. Meyer, RI — the bounds of finitude, Zeitschrift für mathematische Logik und Grundlagen der Mathematik 26 (1970), pp. 385–387.

  10. [10]

    R. K. Meyer, Improved decision procedures for pure relevant logics, Typescript, University of Pittsburgh, 1973.

  11. [11]

    H. B. Curry, Foundations of Mathematical Logic, McGraw-Hill, New York, 1963.

  12. [12]

    J. K. Slaney, 3088 varieties: A solution to the Ackermann constant problem, Journal of Symbolic Logic 50 (1985), pp. 487–501.

Download references

Author information

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Meyer, R.K. Sentential constants in R and R⌝. Stud Logica 45, 301–327 (1986). https://doi.org/10.1007/BF00375901

Download citation

Keywords

  • Mathematical Logic
  • Computational Linguistic
  • Relevant Implication
  • Sentential Constant