Archive for History of Exact Sciences

, Volume 45, Issue 1, pp 17–94 | Cite as

Einstein, Nordström and the early demise of scalar, Lorentz-covariant theories of gravitation

  • John D. Norton
Article

Conclusion

The advent of the general theory of relativity was so entirely the work of just one person — Albert Einstein — that we cannot but wonder how long it would have taken without him for the connection between gravitation and spacetime curvature to be discovered. What would have happened if there were no Einstein? Few doubt that a theory much like special relativity would have emerged one way or another from the researchers of Lorentz, Poincaré and others. But where would the problem of relativizing gravitation have led? The saga told here shows how even the most conservative approach to relativizing gravitation theory still did lead out of Minkowski spacetime to connect gravitation to a curved spacetime. Unfortunately we still cannot know if this conclusion would have been drawn rapidly without Einstein's contribution. For what led Nordström to the gravitational field dependence of lengths and times was a very Einsteinian insistence on just the right version of the equality of inertial and gravitational mass. Unceasingly in Nordström's ear was the persistent and uncompromising voice of Einstein himself demanding that Nordström see the most distant consequences of his own theory.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Abraham, Max (1909) “Zur electromagnetischen Mechanik,” Physikalische Zeitschrift, 10, pp. 737–41.Google Scholar
  2. Abraham, Max (1910) “Die Bewegungsgleichungen eines Massenteilchens in der Relativtheorie,” Physikalische Zeitschrift, 11, pp. 527–31.Google Scholar
  3. Abraham, Max (1912a) “Zur Theorie der Gravitation,” Physikalische Zeitschrift, 13, pp. 1–4.Google Scholar
  4. Abraham, Max (1912b) “Das Elementargesetz der Gravitation,” Physikalische Zeitschrift, 13, pp. 4–5.Google Scholar
  5. Abraham, Max (1912c) “Relativität und Gravitation. Erwiderung auf eine Bemerkung des Hrn. A. Einstein,“ Annalen der Physik, 38, pp. 1056–58.Google Scholar
  6. Abraham, Max (1912d) “Nochmals Relativität und Gravitation. Bemerkung zu A. Einsteins Erwiderung,” Annalen der Physik, 39, pp. 444–48.Google Scholar
  7. Abraham, Max (1912e) “Eine neue Gravitationstheorie,” Archiv der Mathematik und Physik (3), XX, pp. 193–209.Google Scholar
  8. Behacker, M. (1913) “Der freie Fall and die Planetenbewegung in Nordströms Gravitationstheorie,” Physikalische Zeitschrift, 14, pp. 989–992.Google Scholar
  9. Corinaldesi, E., & Papapetrou, A. (1951) “Spinning Test Particles in General Relativity II,” Proceedings of the Royal Society, London, A209, pp. 259–68.Google Scholar
  10. Ehrenfest, Paul (1907) “Die Translation deformierbarer Elektronen und der Flächensatz,” Annalen der Physik, 23, pp. 204–205.Google Scholar
  11. Einstein, Albert (1907) “Über das Relativitätsprinzip und die aus demselben gezogenen Folgerungen,” Jahrbuch der Radioaktivität und Elektronik, 4 (1907), pp. 411–462; 5 (1908), pp. 98–99.Google Scholar
  12. Einstein, Albert (1907a) “Bemerkungen zu der Notiz von Hrn Paul Ehrenfest: ‘Die Translation deformierbarer Elektronen und der Flächensatz’,” Annalen der Physik, 23, pp. 206–208Google Scholar
  13. Einstein, Albert (1907b) “Über die vom Relativitätsprinzip gefordete Trägheit der Energie,” Annalen der Physik, 23, pp. 371–384Google Scholar
  14. Einstein, Albert (1911) “Über den Einfluss der Schwerkraft auf die Ausbreitung des Lichtes,” Annalen der Physik, 35, pp. 898–908Google Scholar
  15. Einstein, Albert (1912a) “Lichtgeschwindigkeit und Statik des Gravitationsfeldes,” Annalen der Physik, 38, pp. 355–69Google Scholar
  16. Einstein, Albert (1912b) “Zur Theorie des Statischen Gravitationsfeldes,” Annalen der Physik, 38, pp. 443–58Google Scholar
  17. Einstein, Albert (1912c) “Gibt es eine Gravitationswirkung, die der elecktrodynamischen Induktionswirkung analog ist?” Vierteljahrsschrift für gerichtliche Medizin und öffentliches Sanitätswesen, 44, pp. 37–40Google Scholar
  18. Einstein, Albert (1912d) “Relativität und Gravitation. Erwiderung auf eine Bemerkung von M. Abraham,” Annalen der Physik, 38, pp. 1059–64Google Scholar
  19. Einstein, Albert (1912e) “Bemerkung zu Abrahams vorangehender Auseinandersetzung ‘Nochmals Relativität und Gravitation’,” Annalen der Physik, 39, p. 704Google Scholar
  20. Einstein, Albert (1913) “Zum gegenwärtigen Stande des Gravitationsproblems,” Physikalische Zeitschrift, 14, pp. 1249–1262.Google Scholar
  21. Einstein, Albert (1915) “Erklärung der Perihelbewegung des Merkur aus der allgemeinen Relativitätstheorie,” Königlich Preussische Akademie der Wissenschaften (Berlin). Sitzungsberichte, 1915, pp. 831–39.Google Scholar
  22. Einstein, Albert (1933) “Notes on the Origin of the General Theory of Relativity,” pp. 285–290 in Ideas and Opinions, trans. Sonja Bargmann, New York: Crown, 1954.Google Scholar
  23. Einstein, Albert (1949) Autobiographical Notes. Open Court, 1979Google Scholar
  24. Einstein, Albert, & Fokker, Adriaan D. (1914) “Die Nordströmsche Gravitationstheorie vom Standpunkt des absoluten Differentialkalküls,” Annalen der Physik, 44, pp. 321–28.Google Scholar
  25. Einstein, Albert, & Grossmann, Marcel (1913) Entwurf einer verallgemeinerten Relativitätstheorie und einer Theorie der Gravitation. Leibzig: B. G. Teubner (separatum); with addendum by Einstein in Zeitschrift für Mathemaik und Physik, 63 (1913), pp. 225–61.Google Scholar
  26. Holton, Gerald (1975) “Finding favor with the Angel of the Lord. Notes towards the Psychobiographical Study of Scientific Genius,” in Y. Elkana, ed., The Interaction between Science and Philosophy. Humanities Press, 1975.Google Scholar
  27. Isaksson, Eva (1985) “Der finnische Physiker Gunnar Nordström und sein Beitrag zur Entstehung der allgemeinen Relativitätstheorie Albert Einsteins,” NTM-Schriftenr., Gesch. Naturwiss., Technik, Med., Leipzig, 22, 1, pp. 29–52.Google Scholar
  28. Janssen, Michel (manuscript) “Larmor, Lorentz and Laue on the Trouton and Trouton-Noble Experiments.” Klein, Martin, et al. (forthcoming) The Collected Papers of Albert Einstein, Vol. 4, Princeton Univ. Press.Google Scholar
  29. Laue, Max (1911a) “Zur Dynamik der Relativitätstheorie,” Annalen der Physik, 35, pp. 524–542.Google Scholar
  30. Laue, Max (1911b) Das Relativitätsprinzip. Braunschweig: Friedrich Vieweg und Sohn.Google Scholar
  31. Laue, Max (1911c) “Ein Beispiel zur Dynamik der Relativitätstheorie,” Verhandlungen der Deutschen Physikalischen Gesellschaft, 1911, pp. 513–518.Google Scholar
  32. Laue, Max (1912) “Zur Theorie des Versuches von Trouton und Noble,” Annalen der Physik, 38, pp. 370–84Google Scholar
  33. Laue, Max (1917) “Die Nordströmsche Gravitationstheorie,” Jahrbuch der Radioaktivität und Elektronik, 14, pp. 263–313.Google Scholar
  34. Laue, Max (1921) Die Relativitätstheorie. Vol. 2: Die allgemeine Relativitätstheorie und Einsteins Lehre von der Schwerkraft. Braunschweig: Freidrich Vieweg und Sohn.Google Scholar
  35. Laue, Max (1949) “Zu Albert Einsteins 70-tem Geburstag,” Rev. Mod. Phys., 21, pp. 348–49Google Scholar
  36. Lewis, Gilbert N., & Tolman, Richard, C. (1909) “The Principle of Relativity, and Non-Newtonian Mechanics,” Philosophical Magazine, 18, pp. 510–523.Google Scholar
  37. Liu, Chuang (1991) Relativistic Thermodynamics: Its History and Foundation. Ph.D. Dissertation, University of Pittsburgh.Google Scholar
  38. Maxwell, James C. “A dynamical theory of the electromagnetic field,” pp. 526–597 in W. D. Niven, (ed.) The Scientific Papers of James Clerk Maxwell, Cambridge at the University Press, 1890, reprinted New York: Dover, 1965Google Scholar
  39. Mie, Gustav (1914) “Bemerkungen zu der Einsteinschen Gravitationstheorie. I and II,” Physikalische Zeitschrift, 14, pp. 115–122, 169–176.Google Scholar
  40. Minkowski, Hermann (1908) “Die Grundgleichungen für die elektromagnetischen Vorgänge in bewegten Körpern,” Königliche Gesellschaft der Wissenschaften zu Göttingen, Mathematisch-Physikalische Klasse, Nachrichten 1908, pp. 53–111; pp. 352–404 in Gesammelte Abhandlung von Hermann Minkowski Vol. 2. Leipzig, 1911, reprinted New York: Chelsea. Page citations from this edition.Google Scholar
  41. Minkowski, Hermann (1909) “Raum und Zeit,” Physikalische Zeitschrift, 10, pp. 104–111; pp. 431–444 in Gesammelte Abhandlungen von Hermann Minkowski, Vol. 2. Leipzig, 1911, reprinted New York: Chelsea (page citations from this edition); translated as “Space and Time,” pp. 75–91 in H. A. Lorentz et al, Principle of Relativity. 1923; reprinted New York: Dover, 1952.Google Scholar
  42. Misner, Charles, W., Thorne, Kip, S., & Wheeler, John A. (1973) Gravitation. San Francisco: Freeman.Google Scholar
  43. Nordström, Gunnar (1909) “Zur Elektrodynamik Minkowskis,” Physikalische Zeitschrift, 10, pp. 681–87.Google Scholar
  44. Nordström, Gunnar (1910) “Zur elektromagnetischen Mechanik,” Physikalische Zeitschrift, 11, pp. 440–45Google Scholar
  45. Nordström, Gunnar (1911) “Zur Relativitätsmechanik deformierbar Körper,” Physikalische Zeitschrift, 12, pp. 854–57Google Scholar
  46. Nordström, Gunnar (1912) “Relativitätsprinzip und Gravitation,” Physikalische Zeitschrift, 13, pp. 1126–29Google Scholar
  47. Nordström, Gunnar (1913a) “Träge und schwere Masse in der Relativitätsmechanik,” Annalen der Physik, 40, pp. 856–78Google Scholar
  48. Nordström, Gunnar (1913b) “Zur Theorie der Gravitation vom Standpunkt des Relativitätsprinzips,” Annalen der Physik, 42, pp. 533–54Google Scholar
  49. Nordström, Gunnar (1914) “Die Fallgesetze und Planetenbewegungen in der Relativitätstheorie,” Annalen der Physik, 43, pp. 1101–10Google Scholar
  50. Nordström, Gunnar (1914a) “Über den Energiesatz in der Gravitationstheorie,” Physikalische Zeitschrift, 14, pp. 375–80Google Scholar
  51. Nordström, Gunnar (1914b) “Über die Möglichkeit. das elektromagnetische Feld und das Gravitationsfeld zu vereinigen,” Physikalische Zeitschrift, 15, pp. 504–506Google Scholar
  52. Nordström, Gunnar (1914c) “Zur Elektrizitätsund Gravitationstheorie,” Ofversigt af Finska Vetenskaps-Societetens Förhandlingar, 57, (1914–1915), Afd. A, N:o. 4, pp. 1–15.Google Scholar
  53. Nordström, Gunnar (1915) “Über eine Mögliche Grundlage einer Theorie der Materie,” Ofversigt af Finska Vetenskaps-Societetens Förhandlingar, 57, (1914–1915), Afd. A, N:o. 28, pp. 1–21.Google Scholar
  54. Norton, John D. (1984) “How Einstein found his Field Equations: 1912–1915,” Historical Studies in the Physical Sciences, 14, pp. 253–316; reprinted in Don Howard & John Stachel (eds.) Einstein and the History of General Relativity: Einstein Studies, Vol. 1 Boston: Birkhäuser, 1989, pp. 101–159.Google Scholar
  55. Norton, John D. (1985) “What was Einstein's Principle of Equivalence?” Studies in History and Philosophy of Science, 16, pp. 203–246; reprinted in Don Howard & John Stachel (eds.) Einstein and the History of General Relativity: Einstein Studies, Vol. 1 Boston: Birkhäuser, 1989, pp. 3–47. (Page citations from the former.)Google Scholar
  56. Norton, John D. (1992) “The Physical Content of General Covariance” in J. Eisenstaedt & A. Kox eds, Studies in the History of General Relativity: Einstein Studies, Vol. 3, Boston: Birkhauser.Google Scholar
  57. Norton, John D. (forthcoming) “Eliminative Induction as a Method of Discovery: How Einstein Discovered General Relativity.”Google Scholar
  58. Pais, A. (1982) Subtle is the Lord: The Science and the Life of Albert Einstein. Oxford: Clarendon.Google Scholar
  59. Papapetrou, A. (1951) “Spinning Test Particle in General Relativity I,” Proceedings of the Royal Society, London, A209, pp. 248–58.Google Scholar
  60. Pauli, Wolfgang (1921) “Relativitätstheorie,” in Encyklopädie der mathematischen Wissenschaften, mit Einschluss an ihrer Anwendung. Vol. 5, Physik, Part 2. Arnold Sommerfeld, ed., Leipzig: B. G. Teubner, 1904–1922, pp. 539–775. [Issued November 15, 1921] English translation Theory of Relativity. With supplementary notes by the author. G. Field, trans. London: Pergamon, 1958. (Citations from the Pergamon edition.)Google Scholar
  61. Planck, Max (1908) “Zur Dynamik Bewegter Körper,” Annalen der Physik, 26, pp. 1–34Google Scholar
  62. Poincaré, Henri (1905) “Sur la Dynamique de l'Électron,” Comptes Rendus des Seances de l'Académie des Sciences, 140, pp. 1504–1508Google Scholar
  63. Poincaré, Henri (1906) “Sur la Dynamique de l'Électron,” Rendiconti del Circolo Matematico di Palermo, 21, pp. 129–75Google Scholar
  64. Ricci, Gregorio & Levi-Civita, Tullio (1901) “Méthodes de Calcul Différentiel Absolu et leurs Application,” Math. Ann., 54, pp. 125–201; reprinted in T. LeviCivita, Opere Matematiche, Vol. 1, Bologna, 1954, pp. 479–559Google Scholar
  65. Rohrlich, Fritz (1960) “Self-Energy and Stability of the Classical Electron,” American Journal of Physics, 28, pp. 639–43Google Scholar
  66. Sommerfeld, Arnold (1910), “Zur Relativitätstheorie I. Vierdimensionale Vektoralgebra,” Annalen der Physik, 32, pp. 749–776; “Zur Relativitätstheorie II. Vierdimensionale Vektoranalysis,” Annalen der Physik, 33, pp. 649–89.Google Scholar
  67. Speziali, Pierre, ed., (1972) Albert EinsteinMichele Besso: Correspondance 1903–1955. Paris: Hermann.Google Scholar
  68. Stachel, John, ed., (1989) Collected Papers of Albert Einstein, Volume 2. The Swiss Years: Writings, 1900–1909. Princeton: Princeton Univ. Press.Google Scholar
  69. Tolman, Richard C. (1934) Relativity, Thermodynamics and Cosmology. Oxford: Oxford University Press; Dover reprint, 1987Google Scholar
  70. Trouton, Frederick T., & Noble, H. R. (1903) “The Mechanical Forces Acting on a Charged Condensor moving through Space,” Philosophical Transactions of the Royal Society of London, 202, pp. 165–181Google Scholar
  71. Weyl, Hermann (1918) “Reine Infinitesimal Geometrie,” Mathematische Zeitschrift, 2, pp. 384–411.Google Scholar
  72. Wheeler, John A. (1979) “Einstein's Last Lecture,” pp. 187–190 in G. E. Tauber (ed.), Albert Einstein's Theory of General Relativity. New York: Crown.Google Scholar

Copyright information

© Springer-Verlag 1992

Authors and Affiliations

  • John D. Norton
    • 1
  1. 1.Department of History and Philosophy of ScienceUniversity of PittsburghUK

Personalised recommendations