Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

Model systems for anatexis of pelitic rocks

I. Theory of melting reactions in the system KAlO2-NaAlO2-Al2O3-SiO2-H2O

  • 149 Accesses

  • 88 Citations

Abstract

A consistent arrangement of solidus curves for reactions involving white mica, alkali feldspar, Al2SiO5, quartz and H2O, as expressed by the components KAlO2-NaAlO2-Al2O3-SiO2-H2O, provides a generally accurate and useful model for the origin of migmatites and peraluminous granites through partial melting of pelitic rocks. The complexities of the univariant (Na-K) reactions may be easily seen on the projection from SiO2 and H2O onto the Ab-Or-Al2O3 plane. Alternative topologies for the appearance of muscovite, paragonite and Al2SiO5 on the quartz and H2O-saturated liquidus may be eliminated by a consideration of possible compositions of liquid and solid phases and Schreinemakers' analysis around (Na-K) invariant points. Paragonite is not likely to be an important phase on the liquidus for most melting paths. Melting paths for natural assemblages may be easily constructed appropriate to P-T-aH2O paths in the model system. Such paths are consistent with observed textures in natural assemblages. Although general models can be developed for decreased aH2O, it is difficult to separate such effects from those involving participation of a calcic component without careful examination of natural assemblages and experimental calibration of appropriate reactions.

This is a preview of subscription content, log in to check access.

References

  1. Blencoe, J.G.: An experimental study of muscovite-paragonite stability relations. Ph. D. thesis, Stanford Univ., p. 216 (1974)

  2. Bowen, N.L.: The melting phenomena of the plagioclase feldspars. Am. J. Sci. 35, 577–599 (1913)

  3. Brown, G.C., Fyfe, W.S.: The production of granitic melts during ultrametamorphism. Contrib. Mineral. Petrol. 28, 310–318 (1970)

  4. Chatterjee, N.D.: Crystal-liquid-vapour equilibria involving paragonite in the system NaAlSi3O8-Al2O3-SiO2-H2O. Indian J. Earth Sci. 1, 3–11 (1974)

  5. Chatterjee, N.D.: Margarite stability and compatibility relations in the system CaO-Al2O3-H2O as a pressure-temperature indicator. Am. Mineralogist 61, 699–709 (1976)

  6. Chatterjee, N.D., Froese, E.: A Thermodynamic study of the pseudobinary join muscovite-paragonite in the system KAlSi3O8-NaAlSi3O8-Al2O3-SiO2-H2O. Am. Mineralogist 60, 985–993 (1975)

  7. Holdaway, M.J.: Stability of andalusite and the aluminum silicate phase diagram. Am. J. Sci. 271, 97–131. (1971)

  8. Huang, W.L., Wyllie, P.J.: Melting relations of muscovite-granite to 35kbar as a model for fusion of metamorphosed subducted oceanic sediments. Contrib. Mineral. Petrol. 42, 1–14 (1973)

  9. Huang, W.L., Wyllie, P.J.: Melting relations of muscovite with quartz and sanidine in the K2O-Al2O3-SiO2-H2O system to 30 kilobars and an outline of paragonite melting relations. Am. J. Sci. 274, 378–395 (1974)

  10. Huang, W.L., Wyllie, P.J.: Melting reactions in the system NaAlSi3O8-KAlSi3O8-SiO2 to 35 kilobars, dry and with excess water. J. Geol. 83, 737–748 (1975)

  11. James, R.S., Hamilton, D.L.: Phase relations in the system NaAlSi3O8-KAlSi3O8-CaAl2Si2O8-SiO2 at 1 kilobar water vapour pressure. Contrib. Mineral. Petrol. 21, 111–141 (1969)

  12. Kerrick, D.M.: Experimental determination of muscovite+quartz stability with \({\text{P}}_{{\text{H}}_{\text{2}} {\text{O}}}\)<Ptotal. Am. J. Sci. 272, 946–958 (1972)

  13. Lambert, I.B., Robertson, J.K., Wyllie, P.J.: Melting relations in the system KAlSi3O8-SiO2-H2O to 18.5 kilobars. Am. J. Sci. 267, 609–626 (1969)

  14. Luth, W.C.: Studies in the system KAlSiO4-Mg2SiO4-H2O: I. Inferred phase relations and petrologic applications. J. Petrol. 8, 372–416 (1967)

  15. Luth, W.C.: The systems NaAlSi3O8-SiO2 and KAlSi3O8-SiO2 to 20kb and the relationship between H2O content, \({\text{P}}_{{\text{H}}_{\text{2}} {\text{O}}}\), and Ptotal in granitic magmas. Am. J. Sci. 267-A, 325–341 (1969)

  16. Luth, W.C., Jahns, R.H., Tuttle, O.F.: The granite system at pressures of 4 to 10 kilobars. J. Geophys. Res. 69, 759–773 (1964)

  17. Merrill, R.B., Robertson, J.K., Wyllie, P.J.: Melting reactions in the system NaAlSi3O8-KAlSi3O8-SiO2-H2O to 20 kilobars compared with results for other feldspar-quartz-H2O and rock-H2O systems. J. Geol. 78, 558–569 (1970)

  18. Nicholls, J., Carmichael, I.S.E.: Peralkaline acid liquids: A petrological study. Contrib. Mineral. Petrol. 20, 268–294 (1969)

  19. Petö, P.: An experimental investigation of melting relations involving muscovite and paragonite in the silica-saturated portion of the system K2O-Na2O-Al2O3-SiO2-H2O to 15kb total pressure. Prog, in Exper. Petrol., N.E.R.C., London, 3rd Report, 41–45 (1976)

  20. Petö, P., Thompson, A.B.: Wet and dry melting of white mica-alkali feldspar assemblages (Abstract). Trans. Am. Geophys. Union 55, 479 (1974)

  21. Richardson, S.W., Gilbert, M.C., Bell, P.M.: Experimental determination of kyanite-andalusite and andalusite-sillimanite equilibria; the aluminium silicate triple point. Am. J. Sci. 267, 259–272 (1969)

  22. Roux, J., Hamilton, D.L.: Primary igneous analcite-an experimental study. J. Petrol. 17, 244–257 (1976)

  23. Schairer, J.F., Bowen, N.L.: Melting relations in the systems Na2O-Al2O3-SiO2 and K2O-Al2O3-SiO2. Am. J. Sci. 245, 193–204 (1947)

  24. Schairer, J.F., Bowen, N.L.: The system K2O-Al2O3-SiO. Am. J. Sci. 253, 681–746 (1955)

  25. Schairer, J.F., Bowen, N.L.: The system Na2O-Al2O3-SiO2. Am. J. Sci. 254, 129–195 (1956)

  26. Storre, B.: Dry melting of muscovite+quartz in the range Ps= 7kb to Ps=20kb. Contrib. Mineral. Petrol. 37, 87–89 (1972)

  27. Storre, B.: Experimentelle Untersuchungen zur Stabilität von Glimmern, insbesondere von Margarit und von Muskovit. Unpublished Habilitationsschrift, Universität Göttingen, 94 p. (1973)

  28. Storre, B., Karotke, E.: Experimental data on melting reactions of muscovite+quartz in the system K2O-Al2O3-SiO2-H2O to 20 kb water pressure. Contrib. Mineral. Petrol. 36, 343–345 (1972)

  29. Thompson, A.B.: Calculation of muscovite-paragonite-alkali feldspar phase relations. Contrib. Mineral. Petrol. 44, 173–194 (1974a)

  30. Thompson, A.B.: The stability of feldspar in metamorphism. In: (MacKenzie, W.S., Zussman, J., eds.). The feldspars, pp. 645–672. Manchester Univ. Press (1974b)

  31. Thompson, J.B., Thompson, A.B.: A model system for mineral facies in pelitic schists. Contrib. Mineral. Petrol., 58, 243–277 (1976)

  32. Tracy, R.J.: High grade metamorphic reactions and partial melting in pelitic schists, Quabbin Reservoir Area, Massachussetts. Ph. D. thesis, Univ. Mass. Amherst, 127 p. (1975)

  33. Tuttle, O.F., Bowen, N.L.: Origin of granite in light of experimental studies. Geol. Soc. Am. Memoir 74, 153pp. (1958)

  34. Winkler, H.G.F., Ghose, N.C.: Further data on the eutectics in the system Qtz-Or-An-H2O. Neues Jahrb. Mineral. Monatsh. 481–484 (1974)

Download references

Author information

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Thompson, A.B., Algor, J.R. Model systems for anatexis of pelitic rocks. Contr. Mineral. and Petrol. 63, 247–269 (1977). https://doi.org/10.1007/BF00375575

Download citation

Keywords

  • Quartz
  • SiO2
  • General Model
  • Mineral Resource
  • Partial Melting