Contributions to Mineralogy and Petrology

, Volume 72, Issue 1, pp 57–72 | Cite as

The genesis of Variscan (Hercynian) plutonic rocks: Inferences from Sr, Pb, and O studies on the Maladeta igneous complex, central Pyrenees (Spain)

  • Annie Michard-Vitrac
  • Francis Albarede
  • Christian Dupuis
  • Hugh P. TaylorJr


The Maladeta plutonic complex formed during the latest stages of the Variscan orogeny. It was emplaced into the Paleozoic sedimentary sequence of the Pyrenees. The eastern part, investigated in the present study, consists of an early intrusion of cumulate gabbronorites followed in order of emplacement by the main biotite-hornblende granodiorite, which was itself intruded by two small stocks of two-mica cordierite granite. An 87Rb-87Sr isochron dates the granodiorite at 277±7 m.y. with an initial (87Sr/86Sr)o ratio of 0.7117±3. Gabbroic rocks have lower strontium initial ratios, down to 0.7092, while those of granite range from that of the granodiorite up to about 0.715. The three rock types have distinctive δ18O values: 8.7 to 9.6 for the gabbronorites, 9.4 to 10.4 for the granodiorites and 10.3 to 11.8 for the granites. Lead isotopic compositions of rocks and feldspars are all radiogenic. Feldspars give consistent Pb model ages around 280 m.y., with μ and κ values of about 9.7 and 4.05, respectively. No pristine, mantle-derived magma was found among the investigated samples and the rocks cannot be related to one another by any simple mechanism of fractional crystallization. Some type of mixing process involving two end members seems to be required: a high-18O, high-87Sr material that is clearly of crustal origin, and a lower-18O, lower-87Sr end member derived from the mantle. Examination of various mixing models does not support magma mixing nor assimilation of crustal rocks by a mafic magma. The most acceptable model involves melting at different levels of a vertically-zoned source in the continental crust; this source was formed by mixing between mantle-derived magmas and crustal metasediments. This material was apparently thickened, tectonically downwarped and partially melted. None of the Maladeta magma-types appear to have been derived at a consuming plate boundary.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Albarède, F.: Some trace element relationships among solid and liquid phases in the course of the fractional crystallisation of magmas. Geochim. Cosmochim. Acta 40, 667–673 (1976a)Google Scholar
  2. Albarède, F.: Thermal models of post-tectonic decompression as exemplified by the Haut-Allier granulites (Massif Central, France) Bull. Soc. Geol. Fr. 18, 1023–1032 (1976b)Google Scholar
  3. Armstrong, R.L., Taubeneck, W.H., Haes, P.O.: Rb-Sr and K-Ar geochronology of Mesozoic granitic rocks and their Sr isotopic composition, Oregon, Washington and Idaho. Geol. Soc. Am. Bull. 88, 397–411 (1977)Google Scholar
  4. Arthaud, F., Matte, P.: The Paleozoic strike-slip faulting in southern Europe and northern America: result of a right-lateral shear zone between the Appalachians and the Urals. Geol. Soc. Am. Bull. 88, 1305–1320 (1977)Google Scholar
  5. Autran, A., Guitard, G.: Sur le granite de Mont-Louis (Pyrénées orientales). Bull. Soc. Geol. Fr. 7, 245–270 (1957)Google Scholar
  6. Autran, A., Fonteilles, M., Guitard, G.: Relations entre les intrusions de granitoïdes, l'anatexie et le métamorphisme régional considérés principalement du point de vue du rôle de l'eau: cas de la chaîne hercynienne des Pyrénées orientales. Bull. Soc. Geol. Fr. 12, 673–731 (1970)Google Scholar
  7. Bard, J.P., Capdevila, R., Matte, P.: La structure de la chaîne hercynienne de la Meseta Ibérique: comparaison avec les segments viosins. IFP-CNEXO Symp. Golfe de Gascogne, Rueil-Malmaison (IFP, ed.) I-4, 1–68 (1971)Google Scholar
  8. Bateman, P.C., Clark, L.D., Huber, N.K., Moore, J.G., Rinehart, C.D.: The Sierra Nevada batholith. A synthesis of recent work across the central part. U.S. Geol. Survey Prof. Paper 414D (1963)Google Scholar
  9. Birck, J.L., Allègre, C.J.: Chronology and chemical history of the parent body of basaltic achondrites studied by the 87Rb-87Sr method. Earth Planet. Sci. Lett. 39, 37–51 (1978)Google Scholar
  10. Bottinga, Y., Javoy, M.: Oxygen isotope partitioning among the minerals in igneous and metamorphic rocks. Rev. Geophys. Space Phys. 13, 401–418 (1975)Google Scholar
  11. Bowen, N.L.: The evolution of the igneous rocks. Princeton: Princeton Univ. Press 1928Google Scholar
  12. Capdevila, R., Corretge, G., Floor, P.: Les granitoïdes varisques de la Meseta Ibérique. Bull. Soc. Geol. Fr. 15, 208–228 (1973)Google Scholar
  13. Chappell, B.W., White, A.J.R.: Two contrasting granite types. Pac. Geol. 8, 173–174 (1974)Google Scholar
  14. Charlet, J.M.: Etude préliminaire du massif granitique de la Maladeta (Pyrénées Centrales Espagnoles). Ann. Soc. Geol. Nord 88, 65–75 (1968)Google Scholar
  15. Charlet, J.M.: Les grands traits géologiques du Massif de la Maladeta, Pyrénées Centrales Espagnoles. Proc. 7th Int. Congr. Pyrenean Studies, Seo de Urgel 1974Google Scholar
  16. Charlet, J.M., Dupuis, C.: Observations nouvelles dans le massif de la Maladeta. IbidGoogle Scholar
  17. Cobbing, E.J., Pitcher, W.S.: The Coastal Batholith of Central Peru. J. Geol. Soc, London 128, 421–460 (1972)Google Scholar
  18. Cogné, J.: Métamorphismes et granitisations en liaison avec l'évolution orogénique en Bretagne méridionale. Bull. Soc. Geol. Fr. 7, 213–226 (1960)Google Scholar
  19. Compston, W., Lovering, J.F.: The strontium isotopic chemistry of granulitic and eclogitic inclusions from the basic pipes at Delegate, eastern Australia. Geochim. Cosmochim. Acta 33, 691–699 (1969)Google Scholar
  20. Dasch, E.J.: Strontium isotopes in weathering profiles, deap-sea sediments and sedimentary rocks. Geochim. Cosmochim. Acta 33, 1521–1552 (1969)Google Scholar
  21. Debon, F.: Les massifs granitoïdes à structure concentrique de Cauterets-Panticosa (Pyrénées occidentales) et leurs enclaves. Sci. Terre, Nancy, Mem. 33 (1975)Google Scholar
  22. Didier, J.: Granites and their enclaves. Amsterdam: Elsevier 1973Google Scholar
  23. Didier, J., Lameyre, J.: Les roches granitiques du Massif Central. In: Géologie du Massif Central Français, J. Jung Symp., Ed. Sci. Clermont-Ferrand 1971Google Scholar
  24. Doe, B.R., Delevaux, M.: Variation in lead isotopic compositions in mesozoic granitic rocks of California: a preliminary investigation. Geol. Soc. Am. Bull. 84, 3513–3526 (1973)Google Scholar
  25. Doe, B.R., Zartman, R.E.: Plumbotectonics. In: Geochemistry of ore deposits (H. Barnes, ed.), 2nd edition. New York: Wiley 1979Google Scholar
  26. Eggler, D.H.: Water-saturated and undersaturated melting relationships in a Paricutin andesite and an estimate of water content in the natural magma. Contrib. Mineral. Petrol. 34, 261–271 (1972)Google Scholar
  27. Faure, G.: Principles of Isotope Geology. New York: Wiley 1977Google Scholar
  28. Fourcade, S., Javoy, M.: Rapports 18O/16O dans les roches du vieux socle catazonal d'In Ouzzal (Sahara Algerien). Contrib. Mineral. Petrol. 42, 235–244 (1973)Google Scholar
  29. Gastil, R.G.: Plutonic zones in the Peninsular Ranges of southern California and northern Baja California. Geology 3, 361–363 (1975)Google Scholar
  30. Gray, C.M., Oversby, V.M.: The behaviour of lead isotopes during granulite facies metamorphism. Geochim. Cosmochim. Acta 36, 939–952 (1972)Google Scholar
  31. Gulson, B.L., Krogh, T.E.: Old lead component in the young Bergell Massif, South East Swiss Alps. Contrib. Mineral. Petrol. 40, 239–252 (1973)Google Scholar
  32. Hamet, H., Allègre, C.J.: Hercynian orogeny in the Montagne Noire (France): application of 87Rb-87Sr systematics. Geol. Soc. Am. Bull. 87, 1429–1442 (1976)Google Scholar
  33. Hamilton, W., Myers, W.B.: The nature of batholiths. U.S. Geol. Survey Prof. Paper 554 C (1967)Google Scholar
  34. Hawkesworth, C.J., Vollmer, R.: Crustal contamination versus enriched mantle: 143Nd/144Nd and 87Sr/86Sr evidence from the Italian volcanics. Contrib. Mineral. Petrol. 69, 151–165 (1979)Google Scholar
  35. Heier, K.S.: Radioactive elements in the continental crust. Nature 208, 479–480 (1965)Google Scholar
  36. Heyl, A.V., Landis, G.P., Zartman, R.E.: Isotopic evidence for the origin of Mississippi Valley-type mineral deposits: a review. Econ. Geol. 69, 992–1006 (1974)Google Scholar
  37. Hodges, F.N., Papike, J.J.: DSDP site 334: Magmatic cumulates from oceanic layer 3. J. Geophys. Res. 81, 4135–4151 (1976)Google Scholar
  38. Honma, H., Sakai, H.: Zonal distribution of oxygen isotope ratios in the Hiroshima granite complex, Southwest Japan. Lithos 9, 173–178 (1976)Google Scholar
  39. James, D.E.: Andean crustal and upper mantle structure. J. Geophys. Res. 76, 3246–3271 (1971)Google Scholar
  40. James, D.E., Brooks, C., Cuyubamba, A.: Andean Cenozoic volcanism magma genesis in the light of strontium composition and trace element geochemistry. Geol. Soc. Am. Bull. 87, 592–600 (1976)Google Scholar
  41. Javoy, M.: Utilisation des isotopes de l'oxygène en magmatologie. Unpubl. Thesis Paris 1970Google Scholar
  42. Kistler, R.W., Peterman, Z.E.: Variation in Sr, Rb, K, Na and initial Sr87/Sr86 in Mesozoic granitic rocks and intruded wall rocks in California. Geol. Soc. Am. Bull. 84, 3489–3512 (1973)Google Scholar
  43. Krebs, W., Wachendorf, H.: Proterozoic-Paleozoic geosynclinal and orogenic evolution of Central Europe. Geol. Soc. Am. Bull. 84, 2611–2630 (1973)Google Scholar
  44. Larsen, E.S.: The batholith of Southern California. Geol. Soc. Am., Mem. 29 (1948)Google Scholar
  45. Leterrier, J.: Etude pétrographique et géochimique du massif granitique de Querigut. Sci. Terre Nancy Mem. 23 (1972)Google Scholar
  46. Magaritz, M., Taylor, H.P., Jr: Oxygen, hydrogen and carbon isotope studies of the Franciscan formation, Coast Ranges, California. Geochim. Cosmochim. Acta 40, 215–234 (1976)Google Scholar
  47. Manhes, G., Minster, J.F., Allègre, C.J.: Comparative uraniumthorium-lead and rubidium-strontium study of the Saint Severin amphoterite: consequences for early solar system chronology. Earth Planet. Sci. Lett. 39, 14–24 (1978)Google Scholar
  48. Marre, J.: Le complexe éruptif de Querigut. Unpubl. Thesis, Toulouse 1973Google Scholar
  49. Masi, U., O'Neil, J.R., Kistler, R.: Stable isotope systematics in Mesozoic granites near the San Andreas and Garlock fault systems, California. Geol. Soc. Am. Abstracts with Programs, Denver Mtg. 998 (1976)Google Scholar
  50. Masuda, A., Nakamura, N., Tanaka, T.: Rare earth elements in metagabbros from the Mid-Atlantic Ridge and their possible implications for the genesis of alkali olivine basalts as well as the Lizard peridotite. Contrib. Mineral. Petrol. 32, 295–306 (1971)Google Scholar
  51. Mehnert, K.R.: Migmatites and the origin of granitic rocks. Amsterdam: Elsevier 1968Google Scholar
  52. Moorbath, S., Welke, H.: Lead isotope studies on igneus rocks from the Isle of Skye, Northwest Scotland. Earth Planet. Sci. Lett. 5, 217–230 (1968)Google Scholar
  53. Moorbath, S., Welke, H., Gale, N.H.: The significance of lead isotope studies in ancient high grade metamorphic basement complexes as exemplified by the Lewisian rocks of Northwest Scotland. Earth Planet. Sci. Lett. 6, 245–256 (1969)Google Scholar
  54. Muehlenbachs, K., Clayton, R.N.: Oxygen isotope studies of fresh and weathered submarine basalts. Can. J. Earth Sci. 9, 172–184 (1972)Google Scholar
  55. Nicolas, A., Bouchez, J.L., Blaise, J., Poirier, J.P.: Geological aspects of deformation in continental shear zones. Tectonophysics 42, 55–73 (1977)Google Scholar
  56. O'Neil, J.R., Chappell, B.W.: Oxygen and hydrogen isotope relations in the Berridale batholith. J. Geol. Soc., London 133, 559–571 (1977)Google Scholar
  57. O'Neil, J.R., Shaw, S.E., Flood, R.H.: Oxygen and hydrogen isotope compositions as indicators of granite genesis in the New England batholith, Australia. Contrib. Mineral. Petrol. 62, 313–328 (1977)Google Scholar
  58. Philpotts, J.A., Schnetzler, C.C.: Europium anomaly and the genesis of basalts. Chem. Geol. 3, 5–13 (1968)Google Scholar
  59. Pitcher, W.S.: The anatomy of a batholith. J. Geol. Soc., London 135, 157–182 (1978)Google Scholar
  60. Ramberg, H.: Fluid dynamics of layered systems in the field of gravity, a theoretical basis for certain global structures and isostatic adjustment. Phys. Earth Planet. Inter. 1, 63–87 (1968)Google Scholar
  61. Richardson, K.A., Adams, J.A.S.: Effect of weathering on radioactive elements in the Conway granite of New Hampshire. Geol. Soc. Am., Spec. Pap. 76, 137 (1964)Google Scholar
  62. Rosholt, J.N., Zartman, R.E., Nkomo, I.T.: Lead isotope systematics and uranium depletion in the Granite Mountains, Wyoming. Geol. Soc. Am. Bull. 84, 989–1002 (1973).Google Scholar
  63. Savin, S.M., Epstein, S.: The oxygen and hydrogen isotope geochemistry of ocean sediments and shales. Geochim. Cosmochim. Acta 34, 43–63 (1970)Google Scholar
  64. Shieh, Y.N., Taylor, H.P. Jr: Oxygen and hydrogen isotope studies of contact metamorphism in the Santa Rosa Range, Nevada, and other areas. Contrib. Mineral. Petrol. 20, 306–356 (1969)Google Scholar
  65. Shieh, Y.N., Schwarcz, H.P.: An estimate of the oxygen isotope composition of a large segment of the Canadian shield in northwestern Ontario. Can. J. Earth Sci. 14, 927–931 (1977)Google Scholar
  66. Sinha, A.K., Davis, T.E.: Geochemistry of Franciscan volcanic and sedimentary rocks from California. Carnegie Inst. Washington Yearb. 69, 394–400 (1971)Google Scholar
  67. Spooner, C.M., Fairbairn, H.W.: Strontium 87/strontium 86 initial ratios in pyroxene granulite terranes. J. Geophys. Res. 75, 6706–6713 (1970)Google Scholar
  68. Stacey, J.S., Kramers, J.D.: Approximation of terrestrial lead isotope evolution by a two-stage model. Earth Planet. Sci. Lett. 26, 207–221 (1975)Google Scholar
  69. Sun, S.S., Hanson, G.N.: Evolution of the mantle: Geochemical evidence from alkali basalts. Geology 3, 297–302 (1975)Google Scholar
  70. Tanaka, T.: Geological significance of Rare Earth Elements in Japanese geosynclinal basalts. Contrib. Mineral. Petrol. 52, 233–246 (1975)Google Scholar
  71. Tatsumoto, M., Knight, T.J., Allègre, C.J.: Time differences in the formation of meteorites as determined from the ratio of lead 207 to lead 206. Science 180, 1279–1283 (1973)Google Scholar
  72. Taylor, H.P., Jr.: The oxygen isotope geochemistry of igneous rocks. Contrib. Mineral. Petrol. 19, 1–71Google Scholar
  73. Taylor, H.P., Jr., Epstein, S.: Relationship between O18/O16 ratios in coexisting minerals of igneous and metamorphic rocks. Part I. Geol. Soc. Am. Bull. 73, 461–480 (1962)Google Scholar
  74. Taylor, H.P., Jr., Forester, R.W.: Low-18 O igneous rocks from the intrusive complexes of Skye, Mull and Ardnamurchan, western Scotland. J. Petrol. 12, 465–497 (1971)Google Scholar
  75. Taylor, H.P., Jr., Giannetti, B., Turi, B.: Oxygen isotope geochemistry of potassic igneous rocks from the Roccamonfina Volcano, Roman comagmatic region, Italy. Earth Planet. Sci. Lett. 46, 81–106 (1979)Google Scholar
  76. Taylor, H.P., Jr., Silver, L.T.: Oxygen isotope relationships in plutonic igneous rocks of the Peninsular Ranges batholith, southern and Baja California. 4th Int. Conf. Geochron. Cosmochron. Isotope Geol. U.S. Geol. Survey Open File Rpt 78-701, 423–426 (1978)Google Scholar
  77. Turekian, K.K., Wedepohl, K.H.: Distribution of the elements in some major units of the Earth's crust. Geol. Soc. Am. Bull. 72, 175–192 (1961)Google Scholar
  78. Turi, B., Taylor, H.P., Jr.: Oxygen isotope studies of potassic volcanic rocks of the Roman Province, Central Italy. Contrib. Mineral. Petrol. 55, 1–31 (1976)Google Scholar
  79. Velde, D.: Les lamprophyres à feldspath alcalin et biotite: minettes et roches voisines. Contrib. Mineral. Petrol. 30, 216–239 (1971)Google Scholar
  80. Vitrac-Michard, A., Allègre, C.J.: A study of the formation and history of a piece of continental crust by 87Rb-87Sr method: the case of the french oriental Pyrenees. Contrib. Mineral. Petrol. 50, 257–285 (1975a)Google Scholar
  81. Vitrac-Michard, A., Allègre, C.J.: 283U-206Pb, 235U-207Pb systematics on the Pyrenean basement. Contrib. Mineral. Petrol. 51, 205–212 (1975 b)Google Scholar
  82. Vollmer, R.: Isotopic evidence for genetic relations between acid and alkaline rocks in Italy. Contrib. Mineral. Petrol. 60, 109–118 (1977)Google Scholar
  83. Wilson, A.F., Green, D.C., Davidson, L.R.: The use of oxygen isotope geothermometry on granulites and related intrusives, Musgrave Ranges central Australia. Contrib. Mineral. Petrol. 27, 166–178 (1970)Google Scholar
  84. Windley, B.F.: The evolving continents. London: Wiley 1977Google Scholar
  85. Yoder, H.S., Tilley, C.E.: Origin of basalt magmas: an experimental study of natural and synthetic rock systems. J. Petrol. 3, 342–532 (1962)Google Scholar
  86. Zartman, R.E., Wasserburg, G.J.: The isotopic composition of lead in potassium feldspars from some 1.0 b.y. old North American igneous rocks. Geochim. Cosmochim. Acta 33, 901–942 (1969)Google Scholar
  87. Zwart, H.J.: On the determination of polymetamorphic mineral associations and its application to the Bosost area (Central Pyrenees). Geol. Rundschau 52, 38–65 (1962)Google Scholar

Copyright information

© Springer-Verlag 1980

Authors and Affiliations

  • Annie Michard-Vitrac
    • 1
  • Francis Albarede
    • 1
  • Christian Dupuis
    • 1
  • Hugh P. TaylorJr
    • 4
  1. 1.Division of Geological and Planetary SciencesCalifornia Institute of TechnologyPasadenaUSA
  2. 2.Centre de Recherches Pétrographiques et Géochimiques CO No 1Vandoeuvre
  3. 3.Ecole Nationale Supérieure de GéologieNancyFrance
  4. 4.Faculté PolytechniqueMonsBelgium

Personalised recommendations