Archive for Rational Mechanics and Analysis

, Volume 111, Issue 2, pp 153–179 | Cite as

The Dirichlet problem for the prescribed curvature equations

  • Neil S. Trudinger
Article

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Aleksandrov, A. D., Uniqueness conditions and estimates for the solution of the Dirichlet problem. Vestnik Leningrad Univ. 18, no. 3 (1963), 5–29 (in Russian). English trans.: Amer. Math. Soc. Trans. (2) 68 (1968), 89–119.Google Scholar
  2. 2.
    Bakelman, I. ya., The Dirichlet problem for the elliptic n-dimensional Mange-Ampère equations and related problems in the theory of quasilinear equations, Proceedings of Seminar on Monge-Ampère Equations and Related Topics, Firenze, 1980, Istituto Nazionale di Alta Matematica, Roma (1982), 1–78.Google Scholar
  3. 3.
    Bombieri, E., DeGiorgi, E., & Miranda, M., Una maggiorazione a priori relativa alle ipersuperfici minimali non parametriche, Arch. Rational Mech. Anal. 32 (1969), 255–267.Google Scholar
  4. 4.
    Caffarelli, L., Nirenberg, L., & Spruck, J., The Dirichlet problem for nonlinear second order elliptic equations III. Functions of the eigenvalues of the Hessian, Acta Math. 155 (1985), 261–301.Google Scholar
  5. 5.
    Caffarelli, L., Nirenberg, L., & Spruck, J., Nonlinear second order equations IV. Starshaped compact Weingarten hypersurfaces, Current Topics in Partial Differential Equations, ed. by Y. Olya, K. Kasahara, N. Shimajura. Kinokunize Co. Tokyo (1986), 1–26.Google Scholar
  6. 6.
    Caffarelli, L., Nirenberg, L., & Spruck, J., Nonlinear second order elliptic equations V. The Dirichlet problem for Weingarten hypersurfaces, Comm. Pure Appl. Math. 41 (1988), 47–70.Google Scholar
  7. 7.
    Crandall, M. G., & Lions, P.-L., Viscosity solutions of Hamilton-Jacobi equations, Trans. Amer. Math. Soc. 77 (1983), 1–42.Google Scholar
  8. 8.
    Evans, L. I., Classical solutions of the Hamilton-Jacobi-Bellman equation for uniformly elliptic operators, Trans. Amer. Math. Soc. 275 (1983), 245–255.Google Scholar
  9. 9.
    Gilbarg, D., & Trudinger, N. S., Elliptic partial differential equations of second order, Springer-Verlag, Berlin, Heidelberg, New York, Tokyo, Second Edition, 1983.Google Scholar
  10. 10.
    Hiusken, G., Flow by mean curvature of convex surfaces into spheres. J. Differential Geometry 20 (1984), 237–266.Google Scholar
  11. 11.
    Ishii, H., On uniqueness and existence of viscosity solutions of fully nonlinear second order elliptic PDE's, Comm. Pure Appl. Math. 42 (1989), 15–45.Google Scholar
  12. 12.
    Ivochkina, N. M., Solution of the Dirichlet problem for some equations of Monge-Ampère type, Mat. Sbornik. (N.S.) 128 (1985), 403–415 (in Russian). English trans.: Math. USSR Sbornik. 56 (1987), 403–415.Google Scholar
  13. 13.
    Ivochkina, N. M., Solution of the curvature problem for the equation of curvature of order m, Dokl. Akad. Nauk. SSSR 299 (1988) (in Russian). English trans.: Soviet Math. Dokl. 37 (1988), 322–325.Google Scholar
  14. 14.
    Jenkins, H., & Serrin, J., The Dirichlet problem for the minimal surface equation in higher dimensions, J. Reine Angew. Math. 229 (1968), 170–187.Google Scholar
  15. 15.
    Jensen, R., The maximum principle for viscosity solutions of fully nonlinear second order partial differential equations, Arch. Rational Mech. Anal. 101 (1988), 1–27.Google Scholar
  16. 16.
    Jensen, R., Lions, P.-L., & Souganidis, P. E., A uniqueness result for viscosity solutions of second order fully nonlinear partial differential equations, Proc. Amer. Math. Soc. 102 (1988), 975–978.Google Scholar
  17. 17.
    Kennington, A., Power concavity and boundary value problems, Indiana Univ. Math. J. 34 (1985), 687–704.Google Scholar
  18. 18.
    Korevaar, N. J., A priori interior gradient bounds for solutions to elliptic Weingarten equations, Ann. Inst. Henri Poincaré, Analyse Non Linéaire 4 (1987), 405–421.Google Scholar
  19. 19.
    Krylov, N. V., Nonlinear elliptic and parabolic equations of the second order, Reidel, Dordrecht, 1987.Google Scholar
  20. 20.
    Krylov, N. V., On the first boundary value problem for nonlinear degenerate elliptic equations, Izvestia Akad. Nauk. SSSR 51 (1987), 242–269 (in Russian). English trans.: Math. USSR Izvestia 30 (1988), 217–244.Google Scholar
  21. 21.
    Kutev, N. D., Boundary gradient estimates for the solutions of fully nonlinear elliptic equations, Proceedings of the Eighteenth Spring Conference of the Union of Bulgarian Mathematicians (1989).Google Scholar
  22. 22.
    Ladyzhenskeya, O. A., & Ural'tseva, N. N., Local estimates for gradients of nonuniformly elliptic and parabolic equations, Comm. Pure Appl. Math. 23 (1970), 677–703.Google Scholar
  23. 23.
    Li, Y. Y., Interior gradient estimates for solutions of certain fully nonlinear elliptic equations (preprint).Google Scholar
  24. 24.
    Lions, P.-L., Optimal control of diffusion processes and Hamilton-Jacobi-Bellman equations. Part 11: Viscosity solutions and uniqueness, Comm. Partial Diffr. Eqns. 8 (1983), 1229–1276.Google Scholar
  25. 25.
    Massari, U., & Miranda, M., Minimal Surfaces of Codimension One, North-Holland, Amsterdam-New York-Oxford (1984).Google Scholar
  26. 26.
    Miranda, M., Una maggiorazione integrale per le curvature delle ipersuperfici minimale, Rend. Sem. Mat. Univ. Padova 38 (1967), 91–107.Google Scholar
  27. 27.
    Mitronovic, D. S., Analytic inequalities, Springer-Verlag, Berlin-Heidelberg-New York, 1970.Google Scholar
  28. 28.
    Santalo, L., Integral geometry and geometric probability, Addison-Wesley, Cambridge, Massachusetts, 1977.Google Scholar
  29. 29.
    Serrin, J., The problem of Dirichlet for quasilinear elliptic differential equations with many independent variables, Philos. Trans. Roy. Soc. London Ser. A 264 (1969), 413–496.Google Scholar
  30. 30.
    Trudinger, N. S., The boundary gradient estimate for quasilinear elliptic and parabolic differential equations, Indiana Univ. Math. J. 21 (1972), 657–670.Google Scholar
  31. 31.
    Trudinger, N. S., A new proof of the interior gradient bound for the minimal surface equation in n dimensions, Proc. Nat. Aacd. Sci. USA 69 (1972), 821–823.Google Scholar
  32. 32.
    Trudinger, N. S., Fully nonlinear, uniformly elliptic equations under natural structure conditions, Trans. Amer. Math. Soc. 278 (1983), 751–769.Google Scholar
  33. 33.
    Trudinger, N. S., Boundary value problems for fully nonlinear elliptic equations, Proc. Centre for Math. Analysis Aust. Nat. Univ. 8 (1984), 65–83.Google Scholar
  34. 34.
    Trudinger, N. S., Graphs with prescribed curvature, Nonlinear Functional Analysis and Its Applications, Proc. Symposia in Pure Mathematics, Amer. Math. Soc. 45 (1986), 461–466.Google Scholar
  35. 35.
    Trudinger, N. S., A priori bounds for graphs with prescribed curvature, Festschrift for Jürgen Moser, Academic Press, 1989.Google Scholar
  36. 36.
    Trudinger, N. S., On the twice differentiability of viscosity solutions of nonlinear elliptic equations, Bull. Aust. Math. Soc. 39 (1989), 443–447.Google Scholar
  37. 37.
    Trudinger, N. S., A priori bounds and necessary conditions for solvability of prescribed curvature equations (to appear).Google Scholar
  38. 38.
    Trudinger, N. S., Isoperimetric inequalities for quermassintegralen (in preparation).Google Scholar
  39. 39.
    Trudinger, N. S., & Urbas, J. I. E., The Dirichlet problem for the equation of prescribed Gauss curvature, Bull. Aust. Math. Soc. 28 (1983), 217–231.Google Scholar
  40. 40.
    Urbas, J. I. E., On the existence of nonclassical solutions for two classes of fully nonlinear elliptic equations (preprint).Google Scholar

Copyright information

© Springer-Verlag 1990

Authors and Affiliations

  • Neil S. Trudinger
    • 1
    • 2
  1. 1.Department of MathematicsNorthwestern UniversityAustralia
  2. 2.Centre for Mathematical AnalysisAustralian National UniversityAustralia

Personalised recommendations