Advertisement

Archive for Rational Mechanics and Analysis

, Volume 114, Issue 2, pp 95–117 | Cite as

Energy minimizers in nonlinear elastostatics and the implicit function theorem

  • Kewei Zhang
Article

Keywords

Neural Network Complex System Nonlinear Dynamics Energy Minimizer Electromagnetism 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    E. Acerbi & N. Fusco, Semicontinuity problems in the calculus of variations, Arch. Rational Mech. Anal. 86 (1984) 125–145.Google Scholar
  2. 2.
    J. M. Ball, Convexity conditions and existence theorems in nonlinear elasticity, Arch. Rational Mech. Anal. 63 (1977) 337–403.Google Scholar
  3. 3.
    J. M. Ball, Constitutive inequalities and existence theorems in nonlinear elasticity, in Nonlinear Analysis and Mechanics: Heriot-Watt Symposium, Vol. 1 (edited by R. J. Knops), Pitman, London, 1977.Google Scholar
  4. 4.
    J. M. Ball, J. C. Currie, & P. J. Olver, Null Lagrangians, weak continuity and variational problems of arbitrary order, J. Functional Anal. 41 (1981) 135–174.Google Scholar
  5. 5.
    J. M. Ball & F. Murat, W 1 p-Quasiconvexity and variational problems for multiple integrals, J. Functional Anal. 58 (1984) 225–253.Google Scholar
  6. 6.
    P. G. Ciarlet, Lectures on Three-Dimensional Elasticity, Springer-Verlag, 1983.Google Scholar
  7. 7.
    P. G. Ciarlet & G. Geymonat, Sur les lois de comportement en élasticité nonlinéaire compressible, C. R. Acad. Sci. Paris Sér. A 298 (1982) 189–192.Google Scholar
  8. 8.
    D. G. B. Edelen, The null set of the Euler-Lagrange operator, Arch. Rational Mech. Anal. 11 (1962) 117–121.Google Scholar
  9. 9.
    L. C. Evans, Quasiconvexity and partial regularity in the calculus of variations, Arch. Rational Mech. Anal. 95 (1986) 227–252.Google Scholar
  10. 10.
    M. Giaquinta, An Introduction to the Regularity Theory for Nonlinear Elliptic Systems, Math. Dept. ETH, Zürich 1984.Google Scholar
  11. 11.
    R. J. Knops & C. A. Stuart, Quasiconvexity and uniqueness of equilibrium solutions in nonlinear elasticity, Arch. Rational Mech. Anal. 86 (1984) 233–249.Google Scholar
  12. 12.
    H. Le Dret, The constitutive law of incompressible bodies and existence in incompressible nonlinear elasticity, Publications du Laboratoire d'Analyse Numérique 2 (1983), No. 83049.Google Scholar
  13. 13.
    J. E. Marsden & T. J. R. Hughes, The Mathematical Foundations of Elasticity, Prentice-Hall, 1983.Google Scholar
  14. 14.
    C. B. Morrey, Multiple Integrals in the Calculus of Variations, Springer-Verlag, 1966.Google Scholar
  15. 15.
    J. Nečas, Introduction to the Theory of Nonlinear Elliptic Equations, Wiley, 1986.Google Scholar
  16. 16.
    R. W. Ogden, Large deformation isotropic elasticity: On the correlation of theory and experiment for compressible rubberlike solids, Proc. Roy. Soc. London A 328 (1972) 567–583.Google Scholar
  17. 17.
    P. Quintela-Estevez, Critical point in the energy of hyperelastic materials, Math. Model. Numer. Anal. 25 (1990) 103–132.Google Scholar
  18. 18.
    J. Sivaloganathan, The generalised Hamilton-Jacobi inequality and the stability of equilibria in nonlinear elasticity, Arch. Rational Mech. Anal. 107 (1989) 347–369.Google Scholar
  19. 19.
    F. Stoppelli, Un teorema di esistenza e di unicità relativo alle equazioni d'elastostatica isoterma per deformazioni finite, Ricerche di Mathematica 3 (1954) 247–267.Google Scholar
  20. 20.
    T. Valent, Boundary Value Problems of Finite Elasticity, Springer-Verlag 1988.Google Scholar
  21. 21.
    K. Zhang, Polyconvexity and stability of equilibria in nonlinear elasticity, Quart. J. Mech. Appl. Math. 43 (1990) 215–221.Google Scholar
  22. 22.
    K. Zhang, Quasiconvexity and stability in the calculus of variations, preprint 1989.Google Scholar

Copyright information

© Springer-Verlag 1991

Authors and Affiliations

  • Kewei Zhang
    • 1
  1. 1.Department of MathematicsUniversity of QueenslandSt. LuciaAustralia

Personalised recommendations