Advertisement

Contributions to Mineralogy and Petrology

, Volume 92, Issue 2, pp 157–180 | Cite as

The evolution of illite to muscovite: mineralogical and isotopic data from the Glarus Alps, Switzerland

  • J. C. Hunziker
  • M. Frey
  • N. Clauer
  • R. D. Dallmeyer
  • H. Friedrichsen
  • W. Flehmig
  • K. Hochstrasser
  • P. Roggwiler
  • H. Schwander
Article

Abstract

Thirty-five illite and muscovite concentrates were extracted from Triassic and Permian claystones, shales, slates and phyllites along a cross-section from the diagenetic Alpine foreland (Tabular Jura and borehole samples beneath the Molasse Basin) to the anchi- and epimetamorphic Helvetic Zone of the Central Alps. Concentrates and thin sections were investigated by microscopic, X-ray, infrared, Mössbauer, thermal (DTA and TG), wet chemical, electron microprobe, K-Ar, Rb-Sr, 40Ar/39Ar and stable isotope methods.

With increasing metamorphic grade based on illite “crystallinity” data (XRD and IR) the following continuous changes are observed: (i) the 1Md→2M1 polymorph transformation is completed in the higher grade anchizone; (ii) K2O increases from 6–8 wt. % (diagenetic zone) to 8.5–10% (anchizone) to 10–11.5% (epizone), reflecting an increase in the total negative layer charge from 1.2 to 2.0; (iii) a decrease of the chemical variation of the mica population with detrital muscovite surviving up to the anchizone/ epizone boundary; iv) a shift of an endothermic peak in differential thermal curves from 500 to 750° C; (v) K-Ar and Rb-Sr apparent ages of the fraction <2 μm decrease from the diagenetic zone to the epizone, K-Ar ages being generally lower than Rb-Sr ages. The critical temperature for total Ar resetting is estimated to be 260±30° C. K-Ar and Rb-Sr ages become concordant when the anchizone/ epizone boundary is approached. The stable isotope data, on the other hand, show no change with metamorphic grade but are dependent on stratigraphic age.

These results suggest that the prograde evolution from 1 Md illite to 2M1 muscovite involves a continuous lattice restructuration without rupture of the tetrahedral and octahedral bonds and change of the hydroxyl radicals, however this is not a recrystallization process. This restructuration is completed approximately at the anchizone/epizone boundary. The isotopic data indicate significant diffusive loss of 40Ar and 87Sr prior to any observable lattice reorganization. The restructuration progressively introduces a consistent repartition of Ar and K in the mineral lattices and is outlined by the 40Ar/39Ar age spectra.

Concordant K-Ar and Rb-Sr ages of around 35-30 Ma. with concomitant concordant 40Ar/39Ar release spectra are representative for the main phase of Alpine metamorphism (Calanda phase) in the Glarus Alps. A second age group between 25 and 20 Ma. can probably be attributed to movements along the Glarus thrust (Ruchi phase), while values down to 9 Ma., in regions with higher metamorphic conditions, suggest thermal conditions persisting at least until the middle Tortonian.

Keywords

87Sr Molasse Metamorphic Grade Molasse Basin Stable Isotope Method 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Alexander EC, Michelson MG, Lanphere MA (1978) MMhb-1: A new 40Ar/39Ar dating standard. In short Papers of the Fourth International Conference, Geochronology, Cosmochronology, Isotope Geology (RE Zartman, ed), US Geological Survey Open-File Report 78-801:6–8Google Scholar
  2. Bannister FA (1942) Brammallite (sodium-illite), a new mineral from Llandebie, South Wales. Mineral Mag 26:304–307Google Scholar
  3. Beugnies A, Godfriaux I, Robaszynski F (1969) Contribution à l'étude des phengites. Bull Soc Belge Géol Pal Hydro 77:95–146Google Scholar
  4. Black PM (1975) Mineralogy of New Caledonian metamorphic rocks. IV. Sheet silicates from the Ouégoa district. Contrib Mineral Petrol 49:269–284Google Scholar
  5. Blokh AM, Sidorenko GA, Dubinchuk VT, Kuznetsova NN (1974) A find of brammalite (sodium hydromica). Dokl Acad Sci USSR, Earth Sci Sect 208:157–160Google Scholar
  6. Brown EH (1967) The greenschist facies in part of eastern Otago, New Zealand, Contrib Mineral Petrol 14:259–292Google Scholar
  7. Büchi UP, Lemcke K, Wiener G, Zimdars J (1965) Geologische Ergebnisse der Erdölexploration auf das Mesozoikum im Untergrund des schweizerischen Molassebeckens. Bull Verein schweiz Petrol Geol Ing 32:7–38Google Scholar
  8. Burghele A, Zimmermann T, Clauer N, Kröner A (1984) Interpretation of 40Ar/39Ar and K/Ar dating of fine clay mineral fractions in Precambrian sediments. 74. Jahrestagung der Geologischen Vereinigung, 22–25. Febr., Terra Cognita 4:130Google Scholar
  9. Centre de Sédimentologie et Géochimie de la Surface de Strasbourg (1978) Technique de préparation des minéraux argileux en vue de l'analyse par diffraction des rayons X. Strasbourg UniversityGoogle Scholar
  10. Chatterjee ND, Johannes W (1974) Thermal stability and standard thermodynamic properties of synthetic 2M1-muscovite, KAl2AlSi3O10(OH)2. Contrib Mineral Petro 48:89–114Google Scholar
  11. Clauer N (1976) Géochimie isotopique du strontium des milieux sédimentaires. Application à la géochronologie de la couverture du craton ouest-africain. Mém Sci Géol Strasbourg 1–256Google Scholar
  12. Clauer N (1982) Strontium isotopies of Tertiary phillipsites from southern Pacific: Timing of the geochemical evolution. J Sed Petrol 52:1003–1009Google Scholar
  13. Cloos M (1983) Comparative study of melange matrix and metashales from the Franciscan subduction complex with the basal Great Valley sequence, California. J Geol 91:291–306Google Scholar
  14. Dallmeyer RD, Rivers T (1983) Recognition of extraneous argon components through incremental-release 40Ar/39Ar analysis of biotite and hornblende across the Grenvillian metamorphic gradient in Southwestern Labrador. Geochim Cosmochim Acta 47:413–428Google Scholar
  15. Dalrymple GB, Lanphere MA (1971) 40Ar/39Ar technique of K-Ar dating: a comparison with the conventional technique. Earth Planet Sci Lett 17:300–308Google Scholar
  16. Dalrymple GB, Alexander EC, Lanphere MA, Kraker GP (1981) Irradiation of samples of 40Ar/39Ar dating using the Geological Survey TRIGA Reactor. US Geol Survey Prof Pap 1176:1–55Google Scholar
  17. Deer WA, Howie RA, Zussmann J (1962) Rock forming minerals, II. Sheet silicates. Longmans LondonGoogle Scholar
  18. Dunoyer de Segonzac G (1969) Les minéraux argileux dans la diagenèse — passage au métamorphisme. Mém Serv Carte Géol Als-Lorr 29:1–320Google Scholar
  19. Dunoyer de Segonzac G, Heddebaut C (1971) Paléozoique anchimétamorphique à illite, chlorite, pyrophyllite, allevardite et paragonite dans les Pyrénées Basque-s. Bull Serv Carte Géol AlsLorr 24:277–290Google Scholar
  20. Esquevin J (1969) Influence de la composition chimique des illites sur leur cristallinité. Bull Centre Rech Pau SNPA 3:147–153Google Scholar
  21. Flehmig W (1973) Kristallinität und Infrarotspektroskopie natürlicher dioktaedrischer Illite. N Jahrb Mineral Monatsh 351–361Google Scholar
  22. Flehmig W, Langheinrich G (1974) Beziehung zwischen tektonischer Deformation und Illit-Kristallinität. N Jahrb Geol Paläont, Abh 146:325–346Google Scholar
  23. Foscolos AE, Kodama H (1974) Diagenesis of clay minerals from Lower Cretaceous shales of north eastern British Columbia. Clays Clay Mineral 22:319–335Google Scholar
  24. Foscolos AE, Powell TG, Gunther PR (1976) The use of clay minerals and inorganic and organic geochemical indicators for evaluating the degree of diagenesis and oil generating potential of shales. Geochim Cosmochim Acta 40:953–966Google Scholar
  25. Frank E, Stettler A (1979) K-Ar and 39Ar-40Ar systematics of white K-mica from an Alpine metamorphic profile in the Swiss Alps. Schweiz Mineral Petrogr Mitt 59:375–394Google Scholar
  26. Frey M (1968) Quartenschiefer, Equisetenschiefer und germanischer Keuper — ein lithostratigraphischer Vergleich. Eclogae Geol Helv 61:141–156Google Scholar
  27. Frey M (1969a) Die Metamorphose des Keupers vom Tafeljura bis zum Lukmanier-Gebiet. Beitr Geol Karte Schweiz NF 131:1–112Google Scholar
  28. Frey M (1969b) A mixed-layer paragonite/phengite of low-grade metamorphic origin. Contrib Mineral Petrol 24:63–65Google Scholar
  29. Frey M (1970) The step from diagenesis to metamorphism in pelitic rocks during alpine orogenesis. Sedimentology 15:261–279Google Scholar
  30. Frey M (1978) Progressive low-grade metamorphism of a black shale formation, central Swiss Alps, with special reference to pyrophyllite and margarite bearing assemblages. J Petrol 19:93–135Google Scholar
  31. Frey M, Wieland B (1975) Chloritoid in autochthon-parautochthonen Sedimenten des Aarmassivs. Schweiz Mineral Petrogr Mitt 55:407–418Google Scholar
  32. Frey M, Bucher K, Frank E, Mullis J (1980a) Alpine metamorphism along the geotraverse Basel-Chiasso — a review. Eclogae Geol Helv 73:527–546Google Scholar
  33. Frey M, Teichmüller M, Teichmüller R, Mullis J, Künzi B, Breitschmid A, Gruner U, Schwizer B (1980b) Very low-grade metamorphism in external parts of the Central Alps: Illite crystallinity, coal rank, and fluid inclusion data. Eclogae Geol Helv 73:173–203Google Scholar
  34. Frey M, Hunziker JC, Jäger E, Stern WB (1983) Regional distribution of white K-mica polymorphs and their phengite content in the Central Alps. Contrib Mineral Petrol 83:185–197Google Scholar
  35. Fröhlicher H, Weiler W (1952) Die Fischfauna der unterstampischen Molasse des Entlebuchs, Kt. Luzern, und ihre paläogeographische Bedeutung. Eclogae Geol Helv 45:1–35Google Scholar
  36. Gaudette HE, Eades JL, Grim RE (1966) The nature of illite. Clays and Clay Mineral 13th Conf: 33–48Google Scholar
  37. Gavish E, Reynolds RC (1970) Structural changes and isomorphic substitution in illites from limestones of variable degrees of metamorphism. Israel J Chem 8:477–485Google Scholar
  38. Grim RE, Rowland RA (1942) Differential thermal analysis of clay minerals and other hydrous materials. Am Mineral 27:746–761 and 801–818Google Scholar
  39. Guidotti CV, Sassi FP (1976) Muscovite as a petrogenetic indicator mineral in pelitic schists. N Jahrb Mineral Abh 127:97–142Google Scholar
  40. Harrison TM (1983) Some observations on the interpretation of 40Ar/39Ar age spectra. Isotope Geoscience 1:319–338Google Scholar
  41. Herb R (1965) Das Tertiär der helvetischen Decken der Ostschweiz. Bull Verein Schweiz Petrol Geol Ing 31:135–151Google Scholar
  42. Hogg CS, Meads RE (1970) The Mössbauer spectra of several micas and related minerals. Mineral Mag 37:606–614Google Scholar
  43. Hower J, Mowatt C (1966) The mineralogy of illites and mixedlayer illite/montmorillonites. Am Mineral 51:825–854Google Scholar
  44. Hunziker JC (1974) Rb-Sr and K-Ar age determination and the alpine tectonic history of the Western Alps. Mem Ist Geol Mineral Univ Padova XXXIGoogle Scholar
  45. Karpova GV (1965) Authigenic hydromicatization in terrigenous sediments. Dokl Acad Sci USSR, Earth Sci Sect 164:172–175Google Scholar
  46. Karpova GV (1969) Clay mineral post-sedimentary ranks in terrigenous rocks. Sedimentology 13:5–20Google Scholar
  47. Kossovskaya AG, Drits VA (1970) The variability of micaceous minerals in sedimentary rocks. Sedimentology 15:83–101Google Scholar
  48. Kotov NV, Mil'kevich RI, Turchenko SI (1969) Paleothermometry of muscovite-bearing metamorphic rocks based on X-ray and chemical analysis of muscovite. Dokl Acad Sci USSR, Earth Sci Sect 184:147–149Google Scholar
  49. Kübler B (1967a) La cristallinité de l'illite et les zones tout à fait supérieures du métamorphisme. Etages tectoniques. Colloque de Neuchâtel 105–122Google Scholar
  50. Kübler B (1967b) Anchimétamorphisme et schistosité. Bull Centre Rech Pau SNPA 1:259–278Google Scholar
  51. Kübler B (1968) Evaluation quantitative du métamorphisme par la cristallinité de l'illite. Bull Centre Rech Pau SNPA 2:385–397Google Scholar
  52. Lawrence JR, Taylor HJ (1971) Deuterium and oxygen-18 correlation: Clay minerals and hydroxides in Quaternary soils compared to meteoric waters. Geochim Cosmochim Acta 35:993–1003Google Scholar
  53. Leupold W, Tanner H, Speck J (1942) Neue Geröllstudien in der Molasse. Eclogae Geol Helv 35:235–246Google Scholar
  54. MacEwan DMC, Ruiz Amil A, Brown G (1961) Interstratified clay minerals. In: G Brown (ed) The X-ray identification and crystal structures of clay minerals. Mineral Soc London, pp 393–445Google Scholar
  55. Maxwell DT, Hower J (1967) High-grade diagenesis and low-grade metamorphism of illite in the Precambrian Belt Series. Am Mineral 52:843–857Google Scholar
  56. McDowell SD, Elders WA (1980) Authigenic layer silicate minerals in borehole Elmore 1, Salton Sea geothermal field, California, USA. Contrib Mineral Petrol 74:293–310Google Scholar
  57. McKinney CR, McCrea JM, Epstein S, Allen HA, Urey C (1950) Improvements in mass spectrometers for the measurement of small differences in isotope abundance ratios. Rev Sci Instrum 21:724–730Google Scholar
  58. Milnes A, Pfiffner A (1977) Structural development of the Infrahelvetic complex, eastern Switzerland. Eclogae Geol Helv 70:83–95Google Scholar
  59. Moort JC van (1971) A comparative study of the diagenetic alteration of clay minerals in Mesozoic shales from Papua, New Guinea, and in Tertiary shales from Louisiana, USA. Clays Clay Mineral 19:1–20Google Scholar
  60. Nash JT (1973) Microprobe analyses of sericite, chlorite and epidote from Jerome, Arizona. J Res US Geol Survey 1:673–678Google Scholar
  61. Niggli E, Niggli C (1965) Karten der Verbreitung einiger Mineralien der alpidischen Metamorphose in den Schweizer Alpen (Stilpnomelan, Alkali-Amphibol, Staurolith, Disthen, Sillimanit). Eclogae Geol Helv 58:335–368Google Scholar
  62. Purdy JW, Stalder HA (1973) K-Ar ages of fissure minerals from the Swiss Alps. Schweiz Mineral Petrogr Mitt 53:79–98Google Scholar
  63. Radoslovich EW, Norrish K (1962) The cell dimensions and symmetry of layer-lattice silicates I. Some structural considerations. Am Mineral 47:599–616Google Scholar
  64. Reynolds RC (1963) Potassium-rubidium ratios and polymorphism in illites and microclines from the clay size fractions of Proterozoic carbonate rocks. Geochim Cosmochim Acta 27:1097–1112Google Scholar
  65. Reynolds RC (1980) Interstratified clay minerals. In: GW Brindley and G Brown (eds) Crystal structures of clay minerals and their identification. Mineral Soc London, pp 249–303Google Scholar
  66. Riedel D (1966) Ein Beitrag zur Mineralogie und Chemie der Tone aus dem Teritär der Niederrheinischen Bucht. Diss KölnGoogle Scholar
  67. Rögl F, Steininger FF (1983) Vom Zerfall der Tethys zu Mediterran und Paratethys. Die neogene Paläogeographie und Palinspastik des zirkum-mediterranen Raumes. Ann Naturhist Mus Wien 85/A: 135–163Google Scholar
  68. Rybach L, Büchi UP, Bodmer P, Krüsi HR (1980) Die Tiefengrundwässer des schweizerischen Mittellandes aus geothermischer Sicht. Eclogae Geol Helv 73:293–310Google Scholar
  69. Schmid SM (1975) The Glarus overthrust: field evidence and mechanical model. Eclogae Geol Helv 68:247–280Google Scholar
  70. Schwander H, Gloor F (1980) Zur quantitativen Mikrosondenanalyse von geologischen Proben mittels kombiniertem EDS/WDS. X-ray Spectrometry 9:134–137Google Scholar
  71. Seki Y (1973) Basal spacing of metamorphic white micas and type of metamorphism. J Geol Soc Japan 79:611–620Google Scholar
  72. Smykatz-Kloss W, Althaus E (1974) Experimental investigation of the temperature dependence of the “crystallinity” of illites and glauconites. Bull Group Franç Argiles 26:319–325Google Scholar
  73. Steiger R, Jäger E (1977) Subcommission on geochronology: convention on the use of decay constants in geo- and cosmochronology. Earth Planet Sci Lett 36:359–362Google Scholar
  74. Stephens MB, Glasson MJ, Keays RR (1979) Structural and chemical aspects of metamorphic layering development in metasediments from Clunes, Australia. Am J Sci 279:129–160Google Scholar
  75. Stubican V, Roy R (1961) Isomorphous substitution and infra-red spectra of the layer lattice silicates. Am Mineral 46:32–51Google Scholar
  76. Tanner H (1944) Beitrag zur Geologie der Molasse zwischen Rikken und Hörnli. Diss Univ ZürichGoogle Scholar
  77. Tobschall HJ (1974) Untersuchungen zur „Short Distance“-Variabilität der Zusammensetzung von Hellglimmern niedrigmetamorpher Pelite des Beaume-Tales (Mittlere Cévennen). N Jahrb Mineral Abh 121:1–42Google Scholar
  78. Trümpy R (1969) Die helvetischen Decken der Ostschweiz: Versuch einer palinspastischen Korrelation und Ansätze zu einer kinematischen Analyse. Eclogae Geol Helv 62:105–142Google Scholar
  79. Turner (1970) Thermal histories of meteorites by the 40Ar-39Ar method. In: P Millman (ed) Meteorite Research. Reidel Publishing Company, Dordrecht-Holland, pp 407–417Google Scholar
  80. Velde B (1965) Experimental determination of muscovite polymorph stabilities. Am Mineral 50:436–449Google Scholar
  81. Velde B (1978) Infrared spectra of synthetic micas in the series muscovite — MgAl celadonite. Am Mineral 63:343–349Google Scholar
  82. Weaver CE (1956) The distribution and identification of mixed-layer clays in sedimentary rocks. Am Mineral 41:202–221Google Scholar
  83. Weaver CE (1965) Potassium content of illite. Science 147:603–605Google Scholar
  84. Weaver CE, Beck KC (1971) Clay water diagenesis during burial: How mud becomes gneiss. Geol Soc Am Spec Pap 134:1–96Google Scholar
  85. Weaver CE, Pollard LD (1973) The chemistry of clay minerals. Developments in Sedimentology 15. Elsevier, AmsterdamGoogle Scholar
  86. Williamson JH (1968) Least-squares fitting of a straight line. Can J Phys 46:1845–1847Google Scholar
  87. Wurster P (1964) Geologie des Schilfsandsteins. Mitt Geol Staatsinst Hamburg H33, Text und AtlasGoogle Scholar
  88. Wurster P (1968) Paläogeographie der deutschen Trias und die paläogeographische Orientierung der Lettenkohle in Südwestdeutschland. Eclogae Geol Helv 61:137–166Google Scholar
  89. Yoder HS, Eugster HP (1955) Synthetic and natural muscovites. Geochim Cosmochim Acta 8:225–280Google Scholar

Copyright information

© Springer-Verlag 1986

Authors and Affiliations

  • J. C. Hunziker
    • 1
  • M. Frey
    • 2
  • N. Clauer
    • 3
  • R. D. Dallmeyer
    • 4
  • H. Friedrichsen
    • 5
  • W. Flehmig
    • 6
  • K. Hochstrasser
    • 7
  • P. Roggwiler
    • 8
  • H. Schwander
    • 2
  1. 1.Abteilung für IsotopengeologieBernSwitzerland
  2. 2.Mineralogisch-Petrographisches InstitutBaselSwitzerland
  3. 3.Centre de Sédimentologie et Géochimie de la SurfaceStrasbourg CedexFrance
  4. 4.Department of GeologyUniversity of GeorgiaAthensUSA
  5. 5.Mineralogisch-Petrographisches InstitutTübingenFederal Republic of Germany
  6. 6.Sediementpetrographisches InstitutGöttingenFederal Republic of Germany
  7. 7.Institut für anorganische ChemieBernSwitzerland
  8. 8.Brown Boveri & Co. Research CentreBadenSwitzerland

Personalised recommendations