Contributions to Mineralogy and Petrology

, Volume 64, Issue 1, pp 53–74 | Cite as

Rare earth geochemistry of fused ophiolitic and alpine lherzolites

II. Beni Bouchera, Ronda and Lanzo
  • Martin Menzies
  • Douglas Blanchard
  • Joyce Brannon
  • Randy Korotev


Partial fusion hypotheses have been proposed for the origin of lherzolite-harzburgite alpine peridotite associations. Analyzed lherzolites from Othris, Ronda, Lanzo and Beni Bouchera, have light REE depleted to chondritic REE abundances, and clinopyroxenes contain most of the REE relative to depleted olivine and orthopyroxene. Variation in the level of REE enrichment within these lherzolites indicates mantle heterogeneity probably caused by partial melting processes. The Beni Bouchera spinel lherzolite and the Othris plagioclase lherzolite are the best candidates for relatively “undepleted” mantle based on REE studies. Fractional fusion calculations (15–25%) reveal that partial melts have REE characteristics somewhat similar to oceanic tholeiites. Conversely, computed source peridotites from oceanic tholeiites (Schilling, 1975) are similar to the alpine lherzolites reported here. Alpine lherzolites are, however, depleted in trace elements (K, Rb, Sr and Ba, Menzies and Murthy 1976). Since the lherzolites have an undepleted major, minor and REE chemistry close to that of pyrolite, the lost trace element-rich fraction must represent a small degree of melting. It is proposed that alpine lherzolites are residue left after the loss of a nephelinitic/alkalic fraction, ([Ce/Yb]N=2.0–4.01) representing a small degree of partial fusion. This labile fraction may have existed as an intergranular phase or hydrous mineral prior to melting.


Olivine Spinel Lherzolite Partial Fusion Intergranular Phase Rare Earth Geochemistry 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Allen, C.A.: The petrology of a portion of the Troodos Plutonic Complex, Cyprus. Unpublished Ph.D. thesis, Cambridge, University, (December 1975)Google Scholar
  2. Allen, R.O., Haskin, L.A., Muller, M.E.: Neutron activation analysis for 39 elements in small or precious geologic samples. J. Radioanalyt. Chem. 6, 115–137 (1970)Google Scholar
  3. Aumento, F., Loncarevic, B.D., Ross, D.I.: Hudson geotraverse: Geology of the mid-Atlantic ridge at 45 N. A sidcussion on the petrology of igneous and metamorphic rocks from the ocean floor. Phil. Trans. Roy. Soc. London, Ser. A 268, 623–650 (1971)Google Scholar
  4. Basu, A., Murthy, R.: Sr isotopes and trace elements in spinel lherzolite xenoliths in basalts, San Quintin, Baja California. EOS 57 v 23, 355. (1976)Google Scholar
  5. Basu, A., Murthy, V.R.: Kaersutites, suboceanic low velocity zone and the origin of midocean ridge basalts. Geology 5, 365–368 (1977).Google Scholar
  6. Beswick, A.E.: K and Rb relations in basalts and other mantle derived materials. Is phlogopite the key? Geochim. Cosmochim. Acta 40, 1167–1184 (1976)Google Scholar
  7. Bezzi, A., Piccardo, G.B.: Structural features of the Ligurian ophiolites: Petrologic evidence for the oceanic floor of the N. Appenines geosyncline: A contribution to the problem of the alpine-type gabbroperidotite associations. Mem. Soc. Geol. Ital. 10, 53–63 (1971)Google Scholar
  8. Blanchard, D., Menzies, M., Jacobs, J.: Rare earth geochemistry of the Point Sal lava pile: Possible REE evidence of basalt-seawater interaction. EOS 57, 12 (1976)Google Scholar
  9. Bonatti, E., Honnorez, J., Ferrara, G.: Equatorial mid-Atlantic ridge-petrologic and Sr isotopic evidence for an alpine type rock assemblage. Earth Planet. Sci. Lett. 9, 247–256Google Scholar
  10. Boudier, F.: Relations lherzolite-gabbro-dunite dans le massif de Lanzo (Alpes piemontaises): Exemple de fusion partielle. These presente a l'Institut des Sciences de la Nature de l”universite de Nantes, Janvier 29 (1972)Google Scholar
  11. Boudier, F., Nicolas, A.: Fusion partielle gabbroique dans la lherzolite de Lanzo. Schweiz. Mineral. Pertrog. Mitt. 52, 39–56 (1972)Google Scholar
  12. Boudier, F., Nicolas, A.: Gabbroic partial melting in the Lanzo lherzolite massif (Western Alps). Relations with plastic flow. Chapmen Conference: Partial Melting in the Earth's Upper Mantle, Brookings Oregon (abs) 1976Google Scholar
  13. Burwell, A.D.M.: Rb-Sr isotope geochemistry of lherzolites and their constituent minerals from Victoria, Australia. Earth Planet. Sci. Lett. 28, 69–78. (1975)Google Scholar
  14. Cann, J.: Major element variations in ocean floor basalts. Phil. Trans. Roy. Soc. London, Ser. A 268, 495–505 (1971)Google Scholar
  15. Conquere, F., Kornprobst, J.: A propos des phases opaques des pyroxenolites du massif des Beni Bouchera (Maroc): quelques precision sur l'evolution des liquides residuels au cours d'un processus de crystallisation fractionee. Bull. Soc. Franc. Mineral. Contrib. 12, 1092–2031 (1971)Google Scholar
  16. Dasch, E.J., Green, D.H.: Strontium isotope geochemistry of lherzolite inclusions and host basaltic rocks, Victoria Australia. Am. J. Sci. 275, 461–469. (1975)Google Scholar
  17. Davies, H.L.: Peridotite gabbro basalt complex in Eastern Papua: An overthrust plate of oceanic mantle and crust. Unpublished thesis Standford University, 88p. (1969)Google Scholar
  18. Denechaud, E.B., Helmke, P.A., Haskin, L.A.: Analysis for the rare earth elements by neutron activation and Ge(Li) spectrometry. J. Radioanalyt. Chem. 6, 97–113 (1970)Google Scholar
  19. DePaolo, D.J., Wasserburg, G.J.: Nd isotopic variations and petrogenetic models. Geophys. Res. Lett. 3, 249–252 (1976)Google Scholar
  20. Dewey, J., Bird, J.M.: Mountain belts and the new global tectonics. J. Geophys. Res. 75, 2625–2647 (1970)Google Scholar
  21. Dewey, J., Pitman, W.C., Ryan, W.B., Bonnin, J.: Plate tectonics and the evolution of the Alpine System. Geol. Soc. Am. Bull. 84, 3137–3180; Figure 4, 3148 (1973)Google Scholar
  22. Dick, H.: The Josephine peridotite, a refractory residue of the generation of andesite. Trans. A.G.U. 44, 464 (1975)Google Scholar
  23. Dickey, J.S.: Partial fusion products in alpine type peridotites. Mineral. Soc. Am. Spec. Papers. 3, 33–59 (1970)Google Scholar
  24. Dickey, J.S.: A hypothesis of origin for podiform chromite deposits. Geochim. Cosmochim. Acta 39, 1061–1074 (1975)Google Scholar
  25. Dickey, J.S., Obato, M., Suen, C.J.: Partial fusion versus fractional crystallization: Hypotheses for the differentiation of the Ronda ultramafic massif of Southern Spain. Chapman Conference: Partial Melting in the Earth's Upper Mantle, Brookings, Oregon (abs.) (1976)Google Scholar
  26. Dmitriev, L.V.: On the origin of ultrabasic rocks from the Indian Ocean rift zones. Geochimie 10, 1179–1186 (1969)Google Scholar
  27. Early, T.: Rare earths in eclogites from the Roberts Victor Kimberlite, South Africa (in prep.) (1975)Google Scholar
  28. Flanagan, F.J.: 1972 values for international geochemical reference samples. Geochim. Cosmochim. Acta 37, 1189–1200 (1973)Google Scholar
  29. Frey, F.A.: Rare earth elements in basic and ultrabasic rocks. Ph. D. thesis, University of Wisconsin, 260–340 (1966)Google Scholar
  30. Frey, F.A.: Rare earth abundances in a high temperature peridotite intrusion. Geochim. Cosmochim. Acta 33, 1429–1477 (1969)Google Scholar
  31. Frey, F.A.: Rare earth abundances in alpine ultramafic rocks. Phys. Earth Planet. Interiors 3, 323 (1970)Google Scholar
  32. Frey, F.A., Bryan, W.B., Tompson, G.: Atlantic ocean floor: Geochemistry and petrology of basalts from legs 2 and 3 of the DSDP. J. Geophys. Res. 79, 5507–5527 (1974)Google Scholar
  33. Frey, F.A., Green, D.: The mineralogy and origin of lherzolite inclusions from Victorian basanites. Geochim. Cosmochim. Acta 38, 1023–1059 (1974)Google Scholar
  34. Frey, F.A., Haskin, M.A., Haskin, L.A.: Rare earth abundances in some ultramafic rocks. J. Geophys. Res. 76, 2057–2070 (1971)Google Scholar
  35. Frey, F.A., Haskin, M.A., Poets, J., Haskin, L.A.: Rare earth abundances in some basic rocks. J. Geophys. Res. 73, 6085–6098 (1968)Google Scholar
  36. Garmann, L.B., Brunfelt, A.O., Finstad, K.G., Heier, K.S.: Rare earth element distribution in basic and ultrasic rocks from west Norway. Chemical Geology 15, 103–116 (1975)Google Scholar
  37. Gass, I.: The ultrabasic volcanic assemblage of the Troodos massif, Crypus. In: Ultramafic and related rocks (J. Wyllie ed.), pp. 121–134. New York: Wiley 1967Google Scholar
  38. Gass, I.G., Smewing, J.D.: Intrusion, extrusion and metamorphism at constructive margins: Evidence from the Troodos massif, Cyprus. Nature 242, 26–29 (1973)Google Scholar
  39. Gast, P.W.: Trace element fractionation and the origin of tholeiitic and alkaline magma types. Geochim. Acta 32, 1057–1086 (1968)Google Scholar
  40. George, R.P.: The internal structure of the Troodos Ultramafic Complex, Cyprus. Ph. D. thesis State University of New York, Stony Brook, May (1975)Google Scholar
  41. George, R.P.: Textures of harzburgite deformed during partial fusion. Chapman Conference: Partial Melting in the Earth's Upper Mantle, Brookings, Oregon (abs.) (1976)Google Scholar
  42. Graham, A.L., Ringwood, A.E.: The stability fields of aluminous pyroxene peridotite and garnet peridotite and their relevance in upper mantle structure. Earth Planet. Sci. Lett. 3, 151–160 (1967)Google Scholar
  43. Green D.H., Ringwood, A.E.: The genesis of basaltic magmas. Contrib. Mineral. Petrol. 15, 103–190 (1967)Google Scholar
  44. Greenbaum, D.: Magmatic processes at ocean ridges: Evidence from the Troodos Massif, Cyprus. Nature 238, 18–21 (1972)Google Scholar
  45. Harris, P.G., Hutchison, R., Paul, D.K.: Plutonic xenoliths and their relation to the upper mantle. Phil. Trans. Roy. Soc. London. Ser. A 271, 313 (1972)Google Scholar
  46. Harris, P.G., Reay, A., White, I.G.: Chemical composition of the upper mantle. J. Geophys. Res. 72, 6359–6369 (1967)Google Scholar
  47. Herzberg, C.T.: Stability fields of plagioclase and spinel lherzolite. N.E.R.C. Progress in Experimental Petrology. Series D, Publ. No. 2 (1972)Google Scholar
  48. Haskin, L.A., Helmke, P.A., Blanchard, D.P., Jacobs, J.W., Telander, K.: Major and trace element abundances in samples from the lunar highlands. Proc. Lunar Sci. Conf. 4th, 1275–1296 (1973)Google Scholar
  49. Helmke, P.A., Blanchard, D., Jacobs, J.W., Haskin, L.A.: Rare earths, other trace elements and iron in Luna 20 samples. Geochim. Cosmochim. Acta 37, 869–874 (1973)Google Scholar
  50. Hofmann, A.W., Hart, S.R.: An assessment of local and regional isotopic equilibrium in a partially molten mantle. Annual Report of the Director, Dept. of Terrestrial Magnetism, p. 195–210 (1974–1975)Google Scholar
  51. Hurley, P.: Rb87/Sr87 relationships in the differentiation of the mantle. In: Ultramafic and related rocks (J. Wyllie, ed.), pp. 372–375. New York: Wiley 1967Google Scholar
  52. Hutchison, R.: Ultramafic xenoliths and the composition of the upper mantle. J. Earth Sci. Leeds 8, Part 1 (1970)Google Scholar
  53. Hutchison, R., Chambers, A.L., Paul, D.K., Harris, P.G.: Chemical variation among French xenoliths-evidence for a heterogeneous upper mantle. Mineral. Mag. 40, 153–170 (1975)Google Scholar
  54. Hutchison, R., Paul, D.K., Harris, P.G.: Chemical composition of the upper mantle. Mineral. Mag. 37, 290; 727–729 (1970)Google Scholar
  55. Hynes, A.J.: The geology of part of the Western Othris Mountains, Greece. Unpublished Ph. D. thesis, Cambridge (1972)Google Scholar
  56. Hynes, A.J., Nisbet, E., Smith, A.G., Welland, M., Rex, D.: Spreading and emplacement ages of some ophiolites in the Othris region. Z. Deut. Geol. Ges. 123, 455–468 (1972)Google Scholar
  57. Ito, K.: Analytical approach to estimating source rock of basaltic magmas: Major elements. J. Geophys. Res. 78, 412–431 (1973)Google Scholar
  58. Kay, R., Hubbard, N., Gast, P.W.: Chemical characteristics and origin of oceanic ridge volcanic rocks. J. Geophys. Res. 75, 1583–1613 (1970)Google Scholar
  59. Kay, R., Senechal, R.G.: The rare earth geochemistry of the Troodos ophiolite Complex. J. Geophys. Res. 81, 964–970 (1976)Google Scholar
  60. Kornprobst, J.: A propos des periodites du massif des Beni Bouchera (Rif septentional). Bull. Soc. Franc. Mineral. Cristallog. 89, 399–404 (1966)Google Scholar
  61. Kornprobst, J.: Le massif ultrabasique des Beni Bouchera (Rif interne, Maroc) etude des peridotites de haute temperature et de haute pression, et des pyroxenolites, a grenat et sans grenat, qui leu sont associes. Contrib. Mineral. Petrol. 23, 283 (1969)Google Scholar
  62. Kushiro, I.: Partial melting of synthetic and natural peridotites at high pressure. Carnegie Yearbook, 357–362 (1971)Google Scholar
  63. Leggo, P., Hutchison, R.: A Rb-Sr study of ultrabasic xenoliths and their basalt host rocks from the Massif Central France. Earth Planet. Sci. Lett. 5, 71–75 (1968)Google Scholar
  64. Loomis, T.P.: Diapiric intrusion of the Ronda high temperature ultramafic intrusion, S. Spain. Bull. Geol. Soc. Am. 83, 2475–2496 (1972)Google Scholar
  65. Loomis, T.P.: Tertiary mantle diaprism orogency and plate tectonics east of the Strait of Gibraltar. Am. J. Sci. 275, 1–30 (1975)Google Scholar
  66. Lort, J.M., Matthews, D.H.: Seismic velocities measured in rocks from the Troodos Igneous Complex. Geophys. J. 27, 286–392 (1972)Google Scholar
  67. Loubet, M., Shimizu, N., Allegre, C.J.: Rare earth elements in alpine peridotite massifs. Contrib. Mineral. Petrol. 53, 1–12 (1975)Google Scholar
  68. Menzies, M.A.: Mineralogy and partial melt textures within an ultramafic-mafic body, Greece. Contrib. Mineral. Petrol. 42, 273–285 (1973)Google Scholar
  69. Menzies, M.A.: Petrogenesis of the Makrirrakhi ultramafic complex (part of the Othris ophiolite). Unpublished Ph. D. thesis, Sept. 1974 Cambridge, England (1974)Google Scholar
  70. Menzies, M.A.: Spinel compositional variation in the crustal and mantle lithologies of the Othris ophiolite. Contrib. Mineral. Petrol. 51, 303–309 (1975)Google Scholar
  71. Menzies, M.A.: Rifting of a Tethyan continent-rare earth evidence of an accreting plate margin. Earth Planet. Sci. Lett. 28, 427–438 (1976a)Google Scholar
  72. Menzies, M.A.: Oceanic lithosphere-evidence from the Mediterranean. EOS 38, 342 (1976b)Google Scholar
  73. Menzies, M.A.: Rare earth geochemistry of fused alpine and ophiolitic lherzolites: Part 1, Othris Lanzo and Troodos, Geochim. Cosmochim. Acta 40, 645–656 (1976c)Google Scholar
  74. Menzies, M.A., Allen, C.A.: Plagioclase lherzolite residual mantle relationships within two eastern Mediterranean ophiolites. Contrib. Mineral. Petrol. 45, 197–213 (1974)Google Scholar
  75. Menzies, M.A., Blanchard, D., Brannon, J., Korotev, R.: Mediterranean lherzolites: Rare earth evidence of their primitive nature. EOS 56, 1080 (1975)Google Scholar
  76. Menzies, M.A., Blanchard, D., Jacobs, J.: Rare earth geochemistry of alpine tectonite lherzolites from northern California. Geol. Soc. Am. (abs.) Vol. 9, 465 (1977)Google Scholar
  77. Menzies, M.A., Murthy, V.R.: Sr-isotopic composition of clinopyroxenes from some Mediterranean alpine lherzolites. Geochim. Cosmochim. Acta 40, 1577–1582 (1976)Google Scholar
  78. Menzies, M.A., Murthy, V.R.: Strontium isotope geochemistry of the constituent minerals in alpine lherzolites (in prep.) (1977)Google Scholar
  79. Montigny, R., Bougault, H., Bottinga, Y., Allegre, C.: Trace element geochemistry and genesis of the Pindos ophiolite suite. Geochim. Cosmochim. Acta 37, 2135–2147 (1972)Google Scholar
  80. Moores, E.M., Vine, F.: The Troodos Massif, Cyprus and other ophiolites as oceanic crust: Evaluation and implications. Phil. Trans. Roy. Soc. London, Ser. A 268, 443–466 (1971)Google Scholar
  81. Nelson, D.O., Dasch, E.J.: Disequilibrium of strontium isotopes between mineral phases of parental rocks during magma genesis-a discussion. J. Volc. and Georermal Res. 1, 183–191 (1976)Google Scholar
  82. Nicolas, A., Jackson, E.D.: Repartition en deux provinces des peridotites des chines alpines logeant la Mediterreanee: implications geotectonique. Schweiz. Mineral. Pertog. Mitt. 52, 479–495 (1972)Google Scholar
  83. Nisbet, E.: The geology of the Neraida area, Othris Mountains, Greece. Unpublished Ph. D. thesis, Cambridge (1974)Google Scholar
  84. Obata, M.: Pressure-temperature trajectories of the Ronda peridotite instrusion, southern Spain. Geol. Soc. Am. (abs) Vol 8, p. 1033 (1976)Google Scholar
  85. O'Hara, M.: The bearing of phase equilibria studies in synthetic and natural systems on the origin and evolution of basic and ultrabasic rocks. Earth Sci. Reviews 4, 69–133 (1968)Google Scholar
  86. O'Hara, M.: Are ocean floor basalt primary magma? Nature 220, 683–686 (1968)Google Scholar
  87. O'Hara, M.: Mineral facies in ultrabasic rocks. In: Ultramafic and related rocks (P.J. Wyllie, ed.), pp. 7–18. New York: Wiley 1969Google Scholar
  88. O'Hara, M.: Non-primary magmas and dubious mantle plume beneath Iceland. Nature 243, 507–508 (1973)Google Scholar
  89. O'Nions, R.K., Pankhurst, R.J.: Petrogenetic significance of isotope and trace element variations in volcanic rocks from the mid-Atlantic J. Petrol. 15, 603–634 (1974)Google Scholar
  90. Philpotts, J.A., Schnetzler, C.C.: Phenocryst-matrix partition coefficients for Rb, Sr, and Ba with application to anorthosite and basalt genesis. Geochim. Cosmochim. Acta 34, 307–322 (1970)Google Scholar
  91. Philpotts, J.A., Schnetzler, C.C., Tomas, H.H.: Petrogenetic implications of some new geochemical data on ecolgitic and ultrabasic inclusions. Geochim. Cosmochim. Acta 36, 1131–1166 (1972)Google Scholar
  92. Potts, M.J., Condie, K.C.: Rare earth element distribution in a protostratiform ultramafic complex intrusion. Contrib. Mineral. Petrol. 33, 245 (1971)Google Scholar
  93. Richard, P., Shimizu, N., Allegre, C.: 143Nd/146Nd a natural tracer: an application to oceanic basalts. Earth Planet. Sci. Lett. 31, 269–278 (1976)Google Scholar
  94. Ringwood, A.E.: Chemical evolution of the terrestrial planets. Geochim. Cosmochim. Acta 30, 41–104 (1966)Google Scholar
  95. Ringwood, A.E.: Composition of the upper mantle (Chapter 3). The pyrolite model (Chapter 5). In: Composition and petrology of the earth's mantle (Summersgill and Bradley, eds.) 618 p. 431, McGraw Hill 1975Google Scholar
  96. Roe, G.D., Pinson, W.H., Hurley, P.M.: Rb-Sr evidence for the origin of peridotites. Trans. Am. Geophys. Union 46, 186 (1965)Google Scholar
  97. Schilling, J.G.: Rare earth variations across normal segments of the Rekjanes ridge 60–53 N, Mid Atlantic ridge 29 S and East Pacific ridge 2–19 S and evidence of the composition of the underlying low-velocity layer. J. Geophys. Res. 80, 1459–1473 (1975)Google Scholar
  98. Schilling, J., Winchester, J.W.: Rare earth fractionation and magmatic processes. In: Mantles of the earth and terrestrial planets, S.K. Runcorn, ed.), pp. 267–283 (1967)Google Scholar
  99. Schnetzler, C.C., Philpotts, J.A.: Partition coefficients of rare earth elements between igneous matrix material and rock rormning mineral phenocrysts, Part II. Geochim. Cosmochim. Acta 34, 331–340 (1970)Google Scholar
  100. Shaw, D.M.: Trace element fractionation during anatexis. Geochim. Cosmochim. Acta 34, 237–243 (1970)Google Scholar
  101. Shih, C., Gast, P.: The distribution of rare earth elements in some dredged ultramafic rocks. Abstract. Geol. Soc. Am. Meeting 3, 702 (1971)Google Scholar
  102. Shih, C., Haskin, L.A., Wiesmann, H., Bansal, B.M., Brannon, J.C.: On the origin of high Ti mare basalt. Proc. Lunar Sci. Conf. 6th (1976)Google Scholar
  103. Shih, C.Y.: The rare earth geochemistry of oceanic igneous rocks Ph. D. thesis, Columbia University, August (1972)Google Scholar
  104. Shimizu, N., Hart, S.R.: Rare earth element concentration in clinopyroxene from an ocean-ridge lherzolite. Carnegie Inst. Yrbk. 73, 964–967 (1974)Google Scholar
  105. Stueber, A.: A geochemical study of ultramafic rocks. Ph. D. thesis, University of California. San Diego (1965)Google Scholar
  106. Stueber, A.M., Ikramuddin, M.: Rb, Sr and the isotopic composition of strontium in ultramafic nodule minerals and host basalts. Geochim. Cosmochim. Acta 4, 207–216 (1974)Google Scholar
  107. Tatsumoto, M., Hedge, C.E., Engle, A.E.J.: Potassium, rubidium strontium, thorium, uranium and the ratio of strontium 87 to strontium 86 in oceanic tholeiitic basalt. Science 150, 886–888 (1965)Google Scholar
  108. Thompson, G.F., Shido, F., Miyashiro, A.: Trace element distributions in fractionated oceanic basalts. Chem. Geol. 9, 89–97 (1972)Google Scholar
  109. Tilley, C.E.: A note on the dunite (Peridotite) myloites of St. Paul's rocks (Atlantic). Geol. Mag. 103, 120–123 (1966)Google Scholar
  110. Tilley, C.E., Long, J.V.P.: The porphyroclast minerals of the peridotite mykonites of St. Paul's rocks (Atlantic). Geol. Mag. 104, 46–48 (1967)Google Scholar
  111. Varne, R., Graham, A.L.: Rare earth abundances in hornblende and clino-pyroxene of hornblende lherzolite xenoliths: Implication for upper mantle fractionation processes. Earth Planet. Sci. Lett. 13, 11–18 (1971)Google Scholar
  112. Weill, D.F., McKay, G.A., Kridelbaugh, S.J., Grutzeck, M.: Modeling the evolution of Sm and Eu abundances during lunar igneous differentiation. Proc. Lunar Sci. Conf. 5th, 1337–1352 (1974)Google Scholar
  113. Welland, M.: The stratigraphy and structure of part of the E. Othris Mountains. Unpublished Ph. D. thesis, Cambridge, England (1972)Google Scholar
  114. Wilson, R.A.M.: The geology of the Xeros-Troodos area. Geol. Survey Dept. Cyprus. Memoir, No. 1 (1959)Google Scholar

Copyright information

© Springer-Verlag 1977

Authors and Affiliations

  • Martin Menzies
    • 1
  • Douglas Blanchard
    • 1
  • Joyce Brannon
    • 2
  • Randy Korotev
    • 3
  1. 1.NASA Johnson Space CenterHoustonUSA
  2. 2.Lockheed ElectronicsHoustonUSA
  3. 3.University of WisconsinMadisonUSA

Personalised recommendations