Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

On uniformly rotating stars

  • 150 Accesses

  • 28 Citations

This is a preview of subscription content, log in to check access.

References

  1. [A]

    G. Auchmuty, The global branching of rotating stars, Arch. Rational Mech. Anal. 114 (1991), 179–194.

  2. [AB1]

    J. F. G. Auchmuty & R. Beals, Variational solutions of some nonlinear free boundary problems, Arch. Rational Mech. Anal. 43 (1971), 255–271.

  3. [AB2]

    J. F. G. Auchmuty & R. Beals, Models of rotating stars, Astrophysical J. 165 (1971), 79–82.

  4. [A]

    J. F. G. Auchmuty, Existence of equilibrium figures, Arch. Rational Mech. Anal. 65 (1977), 249–261.

  5. [CF1]

    L. A. Caffarelli & A. Friedman, The shape of axisymmetric rotating fluid, J. Funct. Anal. 35 (1980), 100–142.

  6. [CF2]

    L. Caffarelli & A. Friedman, The free boundary in the Thomas-Fermi atomic model, J. Diff. Eqns. 32 (1979), 335–356.

  7. [C1]

    S. Chandrasekhar, Introduction to the Study of Stellar Structure, Univ. of Chicago Press, 1939.

  8. [C2]

    S. Chandrasekhar, Ellipsoidal Figures of Equilibrium, Yale Univ. Press, 1969.

  9. [F]

    A. Friedman, Variational Principles and Free-Boundary Problems, Wiley, 1982.

  10. [FT1]

    A. Friedman & B. Turkington, Asymptotic estimates for an axisymmetric rotating fluid, J. Funct. Anal. 37 (1980), 136–163.

  11. [FT2]

    A. Friedman & B. Turkington, Existence and dimensions of a rotating white dwarf, J. Diff. Eqns. 42 (1981), 414–437.

  12. [FT3]

    A. Friedman & B. Turkington, The oblateness of an axisymmetric rotating fluid, Indiana Univ. Math. J. 29 (1980), 777–792.

  13. [K]

    Z. Kopal, Figures of Equilibrium of Celestial Bodies, Univ. of Wisoncsin Press, 1960.

  14. [L]

    H. Lamb, Hydrodynamics, 6th edn., Cambridge Univ. Press. 1932.

  15. [LY]

    E. Lieb & H. Z. Yau, The Chandrasekhar theory of stellar collapse as the limit of quantum mechanics, Comm. Math. Phys. 112 (1987), 147–174.

  16. [P]

    H. Poincaré, Figures d'Équilibre d'une Mass Fluide, Gauthier-Villars, 1901.

  17. [S]

    S. L. Sobolev, On a theorem of functional analysis, Mat. Sb. (N.S.) 4 (1938), 471–497. (Amer. Math. Soc. Translations, Ser. 2, Vol. 34 (1963), 39–68).

  18. [W]

    R. Wavre, Figures Planétaires et Geodésie, Gauthier-Villars, 1932.

Download references

Author information

Additional information

Communicated by H. Brezis

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Li, Y. On uniformly rotating stars. Arch. Rational Mech. Anal. 115, 367–393 (1991). https://doi.org/10.1007/BF00375280

Download citation

Keywords

  • Neural Network
  • Complex System
  • Nonlinear Dynamics
  • Electromagnetism