Archive for Rational Mechanics and Analysis

, Volume 115, Issue 4, pp 329–365

Characterizations of young measures generated by gradients

  • David Kinderlehrer
  • Pablo Pedregal
Article

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Acerbi, E. & Fusco, N., 1984, Semicontinuity problems in the calculus of variations. Arch. Rational Mech. Anal., 86, 125–145.Google Scholar
  2. 2.
    Balder, E. J., 1984, A general approach to lower semicontinuity and lower closure in optimal control theory, SIAM J. Control Opt., 22, 570–597.Google Scholar
  3. 3.
    Ball, J. M., 1984, Singular minimizers and their significance in elasticity, Phase Transformations and Material Instabilities in Solids, (Gurtin, M., ed.) Academic Press, 1–20.Google Scholar
  4. 4.
    Ball, J. M., 1989, A version of the fundamental theorem for Young measures, PDE's and continuum models of phase transitions, Lecture Notes in Physics, 344, (Rascle, M., Serre, D., & Slemrod, M., eds.) Springer, 207–215.Google Scholar
  5. 5.
    Ball, J. M., 1990, Sets of gradients with no rank-one connections, J. math pures et appl., 69, 241–259.Google Scholar
  6. 6.
    Ball, J. M. & James, R., 1987, Fine phase mixtures as minimizers of energy, Arch. Rational Mech. Anal., 100, 15–52.Google Scholar
  7. 7.
    Ball, J. M. & James, R., 1991, Proposed experimental tests of a theory of fine microstructure and the two well problem (to appear).Google Scholar
  8. 8.
    Ball, J. M. & Murat F., 1984, W 1,p-quasiconvexity and variational problems for multiple integrals, J. Anal., 58, 225–253.Google Scholar
  9. 9.
    Ball, J. M. & Murat, F., 1989, Remarks on Chacon's biting lemma, Proc. Amer. Math. Soc., 107, 655–663.Google Scholar
  10. 10.
    Ball, J. M. & Murat, F., Remarks on rank-one convexity and quasiconvexity, to appear.Google Scholar
  11. 11.
    Ball, J. M. & Zhang, K., 1990, Lower semicontinuity of multiple integrals and the biting lemma, Proc. Royal Soc. Edinburgh, 114A, 367–379.Google Scholar
  12. 12.
    Battacharya, K., Self accomodation in martensite.Google Scholar
  13. 13.
    Battacharya, K., Wedge-like microstructure in martensite.Google Scholar
  14. 14.
    Berliocchi, H. & Lasry, J. M., 1973, Integrandes normales et mesures paramétrées en calcul des variations, Bull. Soc. Math. France, 101, 129–184.Google Scholar
  15. 15.
    Brandon, D. & Rogers, R., Nonlocal regularization of L. C. Young's tacking problem, Appl. Math. Opt. (to appear).Google Scholar
  16. 16.
    Capuzzo Dolcetta, I. & Ishii, H., 1984, Approximate solution of the Bellman equation of deterministic control theory, Appl. Math. Opt., 102, 161–181.Google Scholar
  17. 17.
    Chipot, M. & Collins, C., Numerical approximation in variational problems with potential wells, (to appear).Google Scholar
  18. 18.
    Chipot, M. & Kinderlehrer, D., 1988, Equilibrium configurations of crystals, Arch. Rational Mech. Anal., 103, 237–277.Google Scholar
  19. 19.
    Chipot, M., Numerical analysis of oscillations in nonconvex problems, in preparation.Google Scholar
  20. 20.
    Chipot, M., Collins, C., & Kinderlehrer, D., Numerical analysis of oscillations in multiple well problems, in preparation.Google Scholar
  21. 21.
    Chipot, M., Kinderlehrer, D., & Vergara-Caffarelli, G., 1986, Smoothness of linear laminates, Arch. Rational Mech. Anal., 96, 81–96.Google Scholar
  22. 22.
    Collins, C. & Luskin, M., 1989. The computation of the austenitic-martensitic phase transition, PDE's and continuum models of phase transitions (Rascle, M., Serre, D., & Slemrod, M., eds.), Springer Lecture Notes in Physics, 344, 34–50.Google Scholar
  23. 23.
    Collins, C. & Luskin, M., Numerical modeling of the microstructure of crystals with symmetry-related variants, Proc. ARO US-Japan Workshop on Smart/Intelligent Materials and Systems, Technomic.Google Scholar
  24. 24.
    Collins, C. & Luskin, M., Optimal order error estimates for the finite element approximation of the solution of a nonconvex variational problem (to appear).Google Scholar
  25. 25.
    Collins, C., Kinderlehrer, D., & Luskin, M., 1991, Numerical approximation of the solution of a variational problem with a double well potential, SIAM J. Numer. Anal. 28, 321–322.Google Scholar
  26. 26.
    Dacorogna, B., 1982, Weak continuity and weak lower semicontinuity of non-linear functionals, Springer Lecture Notes 922 (1982).Google Scholar
  27. 27.
    Dacorogna, B., 1989, Direct methods in the Calculus of Variations, Springer.Google Scholar
  28. 28.
    Ericksen, J. L., 1979, On the symmetry of deformable crystals, Arch. Rational Mech. Anal., 72, 1–13.Google Scholar
  29. 29.
    Ericksen, J. L., 1980, Some phase transitions in crystals, Arch. Rational Mech. Anal., 73, 99–124.Google Scholar
  30. 30.
    Ericksen, J. L., 1981, Changes in symmetry in elastic crystals, IUTAM Symp. Finite Elasticity (Carlson, D. E. & Shield, R. T., eds.) M. Nijhoff, 167–177.Google Scholar
  31. 31.
    Ericksen, J. L., 1981, Some simpler cases of the Gibbs phenomenon for thermoelastic solids, J. Thermal Stress, 4, 13–30.Google Scholar
  32. 32.
    Ericksen, J. L., 1982, Crystal lattices and sublattices, Rend. Sem. Mat. Padova, 68, 1–9.Google Scholar
  33. 33.
    Ericksen, J. L., 1983, Ill posed problems in thermoelasticity theory, Systems of Nonlinear Partial Differential Equations (Ball, J., ed.), D. Reidel, 71–95.Google Scholar
  34. 34.
    Ericksen, J. L., 1984, The Cauchy and Born hypotheses for crystals, Phase Transformations and Material Instabilities in Solids (Gurtin, M., ed), Academic Press, 61–78.Google Scholar
  35. 35.
    Ericksen, J. L., 1986, Constitutive theory for some constrained elastic crystals, Int. J. Solids Structures, 22, 951–964.Google Scholar
  36. 36.
    Ericksen, J. L., 1986, Stable equilibrium configurations of elastic crystals, Arch. Rational Mech. Anal. 94, 1–14.Google Scholar
  37. 37.
    Ericksen, J. L., 1987, Twinning of crystals I, Metastability and Incompletely Posed Problems, IMA Vol. Math. Appl. 3, (Antman, S., Ericksen, J. L., Kinderlehrer, D., Müller, I., eds) Springer, 77–96.Google Scholar
  38. 38.
    Ericksen, J. L., 1988, Some constrained elastic crystals, Material Instabilities in Continuum Mechanics, (Ball, J., ed.) Oxford, 119–136.Google Scholar
  39. 39.
    Ericksen, J. L., 1989, Weak martensitic transformations in Bravais lattices, Arch. Rational Mech. Anal., 107, 23–36.Google Scholar
  40. 40.
    Evans, L. C., 1990, Weak convergence methods for nonlinear partial differential equations, C.B.M.S. 74, Amer. Math. Soc.Google Scholar
  41. 41.
    Fonseca, I., 1985, Variational methods for elastic crystals, Arch. Rational Mech. Anal., 97, 189–220.Google Scholar
  42. 42.
    Fonseca, I., 1988, The lower quasiconvex envelope of the stored energy function for an elastic crystal, J. Math. pures appl., 67, 175–195.Google Scholar
  43. 43.
    Fonseca, I., Lower semicontinuity of surface measures (to appear).Google Scholar
  44. 44.
    Fonseca, I, The Wulff Theorem revisited (to appear).Google Scholar
  45. 45.
    James, R. D., 1988, Microstructure and weak convergence, Proc. Symp. Material Instabilities in Continuum Mechanics, Heriot-Watt, (Ball, J. M., ed.), Oxford, 175–196.Google Scholar
  46. 46.
    James, R. D. & Kinderlehrer, D., 1989, Theory of diffusionless phase transitions, PDE's and continuum models of phase transitions, Lecture Notes in Physics, 344, (Rascle, M., Serre, D., & Slemrod, M., eds.) Springer, 51–84.Google Scholar
  47. 47.
    James, R. D. & Kinderlehrer, D., 1990, Frustration in ferromagnetic materials, Cont. Mech. Therm. 2, 215–239.Google Scholar
  48. 48.
    James, R. D. & Kinderlehrer, D., A theory of magnetostriction with application to TbDyFe2 (to appear).Google Scholar
  49. 49.
    Kinderlehrer, D., 1988, Remarks about the equilibrium configurations of crystals, Young Measures Generated by Gradients 365 Proc. Symp. Material instabilities in continuum mechanics, Heriot-Watt (Ball, J. M. ed.) Oxford, 217–242.Google Scholar
  50. 50.
    Kinderlehrer, D. & Pedregal, P., Charactérisation des mesures de Young associées à un gradient, C. R. Acad. Sci. Paris (to appear).Google Scholar
  51. 51.
    Kinderlehrer, D. & Pedregal, P., Remarks about Young measures supported on two wells.Google Scholar
  52. 52.
    Kinderlehrer, D. & Pedregal, P., Weak convergence of integrands and the Young measure representation, SIAM J. Math. Anal. (to appear).Google Scholar
  53. 53.
    Kinderlehrer, D. & Vergara-Caffarelli, G., 1989, The relaxation of functionals with surface energies, Asymptotic Analysis 2, 279–298.Google Scholar
  54. 54.
    Kohn, R. V., The relaxation of a double-well energy, Cont. Mech. Therm. (to appear).Google Scholar
  55. 55.
    Liu, F.-C., 1977, A Luzin type property of Sobolev functions, Ind. Univ. Math. J., 26, 645–651.Google Scholar
  56. 56.
    Matos, J., The absence of fine microstructure in α-β quartz.Google Scholar
  57. 57.
    Matos, J., Thesis, University of Minnesota.Google Scholar
  58. 58.
    Morrey, C. B., Jr., 1966, Multiple Integrals in the Calculus of Variations, Springer.Google Scholar
  59. 59.
    Murat, F., 1978, Compacité par compensation, Ann. Scuola Norm. Pisa, 5, 489–507.Google Scholar
  60. 60.
    Murat, F., 1979, Compacité par compensation II, Proc. int. meeting on recent methods in nonlinear analysis, Pitagora, 245–256.Google Scholar
  61. 61.
    Murat, F., 1981, Compacité par compensation III, Ann. Scuola Norm. Pisa, 8, 69–102.Google Scholar
  62. 62.
    Pedregal, P., 1989, Thesis, University of Minnesota.Google Scholar
  63. 63.
    Pedregal, P., 1989, Weak continuity and weak lower semicontinuity for some compensation operators, Proc. Royal Soc. Edin. 113, 267–279.Google Scholar
  64. 64.
    Sverak, V., Quasiconvex functions with subquadratic growth (to appear).Google Scholar
  65. 65.
    Tartar, L., 1979, Compensated compactness and applications to partial differential equations, Nonlinear analysis and mechanics: Heriot Watt Symposium, Vol. IV (Knops, R., ed.) Pitman Res. Notes in Math. 39, 136–212.Google Scholar
  66. 66.
    Tartar, L., 1983, The compensated compactness method applied to systems of conservation laws, Systems of nonlinear partial differential equations (Ball, J. M., ed.), Riedel.Google Scholar
  67. 67.
    Tartar, L., 1984, Étude des oscillations dans les équations aux dérivées partielles nonlinéaires. Springer Lecture Notes in Physics, 195, 384–412.Google Scholar
  68. 68.
    Warga, J., 1972, Optimal control of differential and functional equations, Academic Press.Google Scholar
  69. 69.
    Young, L. C., 1969, Lectures on calculus of variations and optimal control theory, Saunders.Google Scholar
  70. 70.
    Zhang, K., 1990, Biting theorems for Jacobians and their applications, Anal. Non-linéaire, 7, 345–366.Google Scholar
  71. 71.
    Zhang, K., A construction of quasiconvex functions with linear growth at infinity (to appear).Google Scholar

Copyright information

© Springer-Verlag 1991

Authors and Affiliations

  • David Kinderlehrer
    • 1
    • 2
  • Pablo Pedregal
    • 1
    • 2
  1. 1.Department of MathematicsCarnegie Mellon UniversityPittsburgh
  2. 2.Departamento de Matemática AplicadaUniversidad Complutense de MadridMadrid

Personalised recommendations