Contributions to Mineralogy and Petrology

, Volume 98, Issue 3, pp 257–276 | Cite as

Experimental determination of the fluid-absent melting relations in the pelitic system

Consequences for crustal differentiation
  • Daniel Vielzeuf
  • John R. Holloway


In order to provide additional constraints on models for partial melting of common metasediments, we have studied experimentally the melting of a natural metapelite under fluid-absent conditions. The starting composition contains quartz, plagioclase, biotite, muscovite, garnet, staurolite, and kyanite. Experiments were done in a halfinch piston-cylinder apparatus at 7, 10, and 12 kbar and at temperatures ranging from 750° to 1250° C. The following reactions account for the mineralogical changes observed at 10 kbar between 750° and 1250° C: Bi+Als+Pl+Q=L+Gt+(Kf), Ky=Sill, Gt+Als=Sp+Q, Gt=L+Sp+Q, and Sp+Q=L+Als.

The compositions of the phases (at T>875° C) were determined using an energy-dispersive system on a scanning electron microscope. The relative proportions of melt and crystals were calculated by mass balance and by processing images from the SEM. These constraints, together with other available experimental data, are used to propose a series of P-T, T-XH2O, and liquidus diagrams which represent a model for the fluid-present and fluid-absent melting of metapelites in the range 2–20 kbar and 600°–1250° C.

We demonstrate that, even under fluid-absent conditions, a large proportion (≈40%) of S-type granitic liquid is produced within a narrow temperature range (850°–875° C), as a result of the reaction Bi+Als+Pl+Q=L+Gt(+/-Kf). Such liquids, or at least some proportion of them, are likely to segregate from the source, leaving behind a residue composed of quartz, garnet, sillimanite, plagioclase, representing a characteristic assemblage of aluminous granulites.

The production of a large amount of melt at around 850° C also has the important effect of buffering the temperature of metamorphism. In a restitic, recycled, lower crust undergoing further metamorphism, temperature may reach values close to 1000° C due to the absence of this buffering effect. Partial melting is the main process leading to intracontinental differentiation. We discuss the crustal cross-section exposed in the North Pyrenean Zone in the context of our experiments and modelling.


Relative Proportion Partial Melting Lower Crust Kyanite Sillimanite 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Abbott RN Jr., Clarke DB (1979) Hypothetical liquidus relationships in the subsystem A12O3-FeO-MgO projected from quartz, alkali feldspar and plagioclase for a(H2O)<1. Can Mineral 17:549–560Google Scholar
  2. Albarède F (1976) Thermal models of post-tectonic decompression as examplified by the Haut-Allier granulites (Massif Central, France). Bull Soc Geol Fr 18:1023–1031Google Scholar
  3. Arps CES, van Calsteren C, Hilgen JD, Kuijper RP, den Tex E (1977) Mafic and related complexes in Galicia: an excursion guide. Leidse Geol Meded 51:3–94Google Scholar
  4. Bard JP (1969) Le métamorphisme régional progressif des Sierras d'Aracena en Andalousie occidentale (Espagne). Sa place dans le segment hercynien sub-ibérique. Thèse d'Etat, Montpellier, 398pGoogle Scholar
  5. Blatt H, Middleton G, Murray R (1972) Origin of Sedimentary rocks. Prentice-Hall Inc., 634 pGoogle Scholar
  6. Bohlen SR, Boettcher AL, Wall VJ, Clemens JD (1983) Stability of phlogopite-quartz and sanidine-quartz: a model for melting in the lower crust. Contrib Mineral Petrol 83:270–277Google Scholar
  7. Bohlen SR, Dollase WA, Wall VJ (1986) Calibration and applications of spinel equilibria in the system FeO-A12O3-SiO2. J Petrol 27:1143–1156Google Scholar
  8. Bohlen SR, Essene EJ, Boettcher AL (1980) Reinvestigation and application of olivine-quartz-orthopyroxene barometry. Earth Planet Sci Lett 47:1–10Google Scholar
  9. Burnham CW (1967) Hydrothermal fluids at the magmatic stage. In: Barnes HL (ed) Geochemistry of hydrothermal ore deposits. Holt, Reinhart and Winston, New York, pp 38–76Google Scholar
  10. Burnham CW (1979) The importance of volatile constituents. In: Yoder HS (ed) The evolution of the igneous rocks (Fiftieth anniversary perspectives), Princeton University Press, Princeton, pp 439–482Google Scholar
  11. Burnham CW, Nekvasil H (1986) Equilibrium properties of granite pegmatite magmas. Am Mineral 71:239–263Google Scholar
  12. Chopin C (1984) Coesite and pure pyrope in high-grade blueschists of the Western Alps: a first record and some consequences. Contrib Mineral Petrol 86:107–118Google Scholar
  13. Clemens JD (1981) The origin and evolution of some peraluminous acid magmas (experimental, geochemical and petrological investigations). Unpubl. Ph. D. Thesis, Monash University, Australia, 577 pGoogle Scholar
  14. Clemens JD (1984) Water contents of intermediate to silicic magmas. Lithos 11:213–287Google Scholar
  15. Clemens JD, Circone S, Navrotsky A, McMillan PF, Smith BK, Wall VS (1987) Phlogopite: new calorimetric data and the effect of stacking disorder on thermodynamic properties. Geochim Cosmochim Acta 51:2569–2578Google Scholar
  16. Clemens JD, Vielzeuf D (1987) Constraints on melting and magma production in the crust. Earth Planet Sci Lett 86:287–306Google Scholar
  17. Clemens JD, Wall VJ (1981) Crystallization and origin of some peraluminous (S-type) granitic magmas. Can Mineral 19:111–132Google Scholar
  18. Couturie JP, Kornprobst J (1977) Une interprétation géodynamique de l'évolution polyphasée des assemblages des granulites dans les chaînes bético-rifaines et le Massif Central Français. CR Somm Soc Geol Fr 5:289–291Google Scholar
  19. Debon F (1975) Les massifs granitoïdes à structure concentrique de Cauterets-Panticosa (Pyrénées Occidentales) et leurs ensembles. Sci de la Terre, Mem. n∘ 33, Nancy, 420 pGoogle Scholar
  20. den Tex E, Engels JP, Vogel DE (1972) A high-pressure intermediate-temperature facies series in the Precambrian at Cabo Ortegal (Northwest Spain). 24th Int Geol Cong, 1972 Section 2:64–73Google Scholar
  21. Eggler DH (1973) Principles of melting of hydrous phases in silicate melt. Carnegie Inst Wash Yrbk 72:491–495Google Scholar
  22. Eggler DH, Holloway JR (1977) Partial Melting of peridotite in the presence of H2O and CO2: principles and review. Magma Genesis, Oregon Dept Geol Min Ind Bull 96:15–36Google Scholar
  23. Ellis DJ (1980) Osumilite-sapphirine-quartz granulites from Enderby Land, Antarctica: P-T conditions of metamorphism, implications for garnet-cordierite equilibria and the evolution of the deep crust. Contrib Mineral Petrol 74:201–210Google Scholar
  24. Ellis DJ (1986) Garnet-liquid Fe2+-Mg equilibria and implications for the beginning of melting in the crust and subduction zones. Am J Sci 286:765–791Google Scholar
  25. Engels JP (1972) The catazonal polymetamorphic rocks of Cabo Ortegal (NW Spain), a structural and petrofabric study. Leidse Geol Med 48:83–133Google Scholar
  26. England PC, Richardson SW (1977) The influence of erosion upon the mineral facies of rocks from different metamorphic environments. J Geol Soc Lond 134:201–213Google Scholar
  27. England PC, Thompson AB (1986) Some thermal and tectonic models for crustal melting in continental collision zones. In: Coward MP, Ries AC (eds) Collision tectonics. Geol Soc Spec Pub 19:83–94Google Scholar
  28. Esperança S, Holloway JR (1986) The origin of the high-K latites from Camp Creek, Arizona: constraints from experiments with variable fO2 and aH2O. Contrib Mineral Petrol 93:504–512Google Scholar
  29. Eugster JP, Wones DR (1962) Stability relations of the ferruginous biotite, annite. J Petrol 3:82–125Google Scholar
  30. Ferry JM, Spear FS (1978) Experimental calibration of the partitioning of Fe and Mg between biotite and garnet. Contrib Mineral Petrol 66:113–117Google Scholar
  31. Frey M, Hunziker JC, Franck W, Bocquet J, Dal Piaz GV, Jager E, Niggli E (1974) Alpine metamorphism of the Alps. A review. Schweiz Mineral Petrogr Mitt 54 2/3:247–291Google Scholar
  32. Fyfe WS, Price NJ, Thompson AB (1978) Fluids in the Earth's Crust. Developments in Geochemistry, 1, Elsevier, Amsterdam, 383 pGoogle Scholar
  33. Ghent ED, Stout MZ (1981) Geobarometry and geothermometry of plagioclase-biotite-garnet-muscovite assemblages. Contrib Mineral Petrol 76:92–97Google Scholar
  34. Goranson RW (1931) The solubility of water in granite magmas. Am J Sci 22:481–502Google Scholar
  35. Grant JA (1981) Orthoamphibole and orthopyroxene relations in high-grade metamorphism of pelitic rocks. Am J Sci 281:1127–1143Google Scholar
  36. Grant JA (1985) Phase equilibria in partial melting of pelitic rocks. In: Migmatites, Ashworth JR (ed) Glasgow, Blackie and Son, pp 86–144Google Scholar
  37. Grant JA (1986a) The isocon diagram — A simple solution to Gresens' equation for metasomatic alteration. Econ Geol 81:1976–1982Google Scholar
  38. Grant JA (1986b) Quartz-phlogopite-liquid equilibria and origins of charnockites. Am Mineral 71:1071–1075Google Scholar
  39. Green TH (1977) Garnet in silicic liquids and its possible use as a P-T indicator. Contrib Mineral Petrol 65:59–67Google Scholar
  40. Grew ES (1982a) Osumilite in the sapphirine-quartz terrane of Enderby Land, Antarctica: Implications for osumilite petrogenesis in the granulite facies. Am Mineral 67:762–787Google Scholar
  41. Grew ES (1982a) Sapphirine, kornerupine, and sillimanite+orthopyroxene in the charnockitic region of south India. J Geol Soc India 23, 10:469–505Google Scholar
  42. Harris NBW, Holland TJB (1984) The significance of cordierite-hypersthene assemblages from the Beitbridge region of the Central Limpopo belt; evidence for rapid decompression in the Archaean? Am Mineral 69:1036–1049Google Scholar
  43. Helgeson HC, Delany JM, Nesbitt HW, Bird DK (1978) Summary and critique of the thermodynamic properties of rock-forming minerals. Am J Sci 278-A:1–229Google Scholar
  44. Hensen BJ (1986) Theoretical phase relations involving cordierite and garnet revisited: the influence of oxygen fugacity on the stability of sapphirine and spinel in the system Mg-Fe-Al-Si-O. Contrib Mineral Petrol 92:362–367Google Scholar
  45. Hoffer E (1976) The reaction sillimanite+biotite+quartz=cordierite+K-feldspar+H2O and partial melting in the system K2O-FeO-MgO-Al2O3-SiO2-H2O. Contrib Mineral Petrol 55:127–130Google Scholar
  46. Hoffer E (1978) Melting reactions in aluminous metapelites: stability limits of biotite+sillimanite+quartz in the presence of albite. Neues Jahrb Mineral Monatsh 9:396–407Google Scholar
  47. Hoffer E, Grant JA (1980) Experimental investigation of the formation of cordierite-orthopyroxene parageneses in pelitic rocks. Contrib Mineral Petrol 73:15–22Google Scholar
  48. Holdaway MJ (1980) Chemical formulae and activity models for biotite, muscovite and chlorite applicable to pelitic metamorphic rocks. Am Mineral 65:711–719Google Scholar
  49. Holdaway MJ, Lee SM (1977) Fe-Mg cordierite stability in highgrade pelitic rocks based on experimental, theoretical and natural observations. Contrib Mineral Petrol 63:175–198Google Scholar
  50. Hoschek G (1969) The stability of staurolite and chloritoid and their significance in metamorphism of pelitic rocks. Contrib Mineral Petrol 22:208–232Google Scholar
  51. Jakobsson S, Holloway JR (1986) Crystal-liquid experiments in the presence of a C-O-H fluid buffered by graphite+iron+ wustite: experimental method and near liquidus relations in basanite. J Volcanol Geotherm Res 29:265–291Google Scholar
  52. Jakeš P (1969) Retrogressive changes of granulite-facies rocks — an example from the Bohemian Massif. Spec Publ Geol Soc, Australia, 2:367–374Google Scholar
  53. Johannes W (1978) Melting of plagioclase in the system Ab-An-H2O and Qz-Ab-An-H2O at PH2O=5 kbar, an equilibrium problem. Contrib Mineral Petrol 66:295–303Google Scholar
  54. Karsakov LP, Shuldiner VI, Lennikov AM (1975) Granulite complex of the eastern part of the Stanovoy fold province and the Chogar facies of depth. (in Russian), Izvest Akad Nauk SSSR Ser Geol 5:47–61Google Scholar
  55. Keesman I, Matthes S, Schreyer W, Seifert F (1971) Stability of almandine in the system FeO-(Fe2O3)-A12O3-SiO2-(H2O) at elevated pressures. Contrib Mineral Petrol 31:132–144Google Scholar
  56. Kushiro I, Yoder HS (1969) Melting of forsterite and enstatite at high pressure under hydrous conditions. Carnegie Inst Washington, Ann Rept Dir Geophys Lab 1967-68:153–161Google Scholar
  57. Lambert IB, Robertson JK, Wyllie PJ (1969) Melting reactions in the system KAlSi3O8-SiO2-H2O to 18.5 kilobars. Am J Sci 267:609–626Google Scholar
  58. Lasnier B (1977) Persistance d'une série granulitique au cœur du Massif Central français (Haut Allier). Les termes basiques, ultrabasiques et carbonatés. Thèse d'Etat, Nantes, 351 pGoogle Scholar
  59. Le Breton N, Thompson AB (in prep.) Fluid-absent (dehydration) melting of biotite in metapelites in the early stages of crustal anatexisGoogle Scholar
  60. Leterrier J (1972) Etude pétrographique et géochimique du massif granitique de Quérigut (Ariège). Sci de la Terre, Mem Fr, 23, 320 pGoogle Scholar
  61. Lonker SW (1981) The P-T-X relations of the cordierite-garnet-sillimanite-quartz equilibrium. Am J Sci 281:1056–1090Google Scholar
  62. Luth WC (1967) Studies in the system KAlSiO4-Mg2SiO4-SiO2-H2O: I Inferred phase relations and petrologic application. J Petrol 8:372–416Google Scholar
  63. Luth WC, Jahns RH, Tuttle OF (1964) The granite system at pressures of 4 to 10 kilobars. J Geophys Res 9:759–773Google Scholar
  64. Maaløe S, Wyllie PJ (1975) Water content of a granite magma deduced from the sequence of crystallization determined experimentally with water-undersaturated conditions. Contrib Mineral Petrol 52:175–191Google Scholar
  65. Maijer C, Jansen JBH, Wevers J, Poorter RPE (1977)-Osumilite, a mineral new to Norway. Norsk geologisk Tidsskrift 57:187–188Google Scholar
  66. Marchand J (1974) Persistance d'une série granulitique au cœur du Massif Central français — Haut Allier. Les Termes acides. Thèse 3ème cycle, Nantes, 207 pGoogle Scholar
  67. Michard-Vitrac A, Albarède F, Dupuis C, Taylor HPJ (1980) The genesis of Variscan (Hercynian) plutonic rocks: Inferences from Sr, Pb and O studies on the Maladeta igneous complex, central Pyrenees (Spain). Contrib Mineral Petrol 72:57–72Google Scholar
  68. Montel JM, Weber C, Pichavant M (1986) Biotite-sillimanite-spinel assemblages in high-grade metamorphic rocks: occurrences, chemographic analysis and thermobarometric interest. Bull Mineral 109:555–573Google Scholar
  69. Morse SA, Talley JH (1971) Sapphirine reactions in deep-seated granulites near Wilson lake, Central Labrador, Canada. Earth Planet Sci Lett 10:325–328Google Scholar
  70. Nekvasil H, Burnham CW (1987) The calculated individual effects of pressure and water content on phase equilibria in the granite system. In: BO Mysen (ed) Magmatic Processes: Physicochemical Principles. Geochem Soc Spec pub 1:433–445Google Scholar
  71. Newton RC (1983) Geobarometry of high grade metamorphic rocks. Am J Sci 283 A:1–28Google Scholar
  72. Newton RC, Haselton HT (1981) Thermodynamics of the garnetplagioclase-Al2SiO5-quartz geobarometer. In: RC Newton, A Navrotsky, BJ Wood (Eds) Thermodynamics of minerals and melts, Springer, Berlin Heidelberg New York, 129–145Google Scholar
  73. Novak JM, Holdaway MJ (1981) Metamorphic petrology, mineral equilibria, and polymetamorphism in the Augusta quadrangle, south central Maine. Am Mineral 66:51–69Google Scholar
  74. Ouzegane K (1981) Le métamorphisme polyphasé granulitique de la région de Tamanrasset (Hoggar Central). Thèse 3ème cycle, Paris VIGoogle Scholar
  75. Patera ES, Holloway JR (1982) Experimental determination of the spinel-garnet boundary in a Martian mantle composition. J Geophys Res [Suppl] 87:A31-A36Google Scholar
  76. Perchuk LL, Podlesskii KK, Aranovich LYA (1981) Calculation of thermodynamic properties of end-member minerals from natural parageneses. In: RC Newton, A Navrotsky, BJ Wood (eds) Thermodynamics of minerals and melts, Springer, New York, pp 111–129Google Scholar
  77. Peterson JW, Newton RC (1987) Reversed biotite+quartz melting reactions. EOS 68, 16:451Google Scholar
  78. Phillips GN (1980) Water activity changes across an amphibolitegranulite facies transition, Broken Hill, Australia. Contrib Mineral Petrol 75:377–386Google Scholar
  79. Pin C, Vielzeuf D (1983) Granulites and related rocks in Variscan median Europe: a dualistic interpretation. Tectonophysics 93:47–74Google Scholar
  80. Postaire B (1982) Systématique Pb commun et U-Pb sur zircons. Application aux roches de haut grade métamorphique impliquées dans la chaîne hercynienne (Europe de l'Ouest) et aux granulites de Laponie (Finlande). Thèse 3ème cycle, Rennes, 71 pGoogle Scholar
  81. Respaut JP, Lancelot JR (1983) Datation de la mise en place synmétamorphe de la charnockite d'Ansignan (massif de l'Agly) par la méthode U — Pb sur zircons et monazites. N Jhb Miner Abh 147:21–34Google Scholar
  82. Robertson JK, Wyllie PJ (1971) Rock-water systems with special reference to the water-deficient region. Am J Sci 271:252–277Google Scholar
  83. Rutherford MJ (1969) An experimental determination of iron biotite-alkali feldspar equilibria. J Petrol 10:381–408Google Scholar
  84. Schairer JF, Yagi K (1952) The system FeO-Al2O3-SiO2. Am J Sci (Bowen vol) 471–512Google Scholar
  85. Schreyer W, Yoder HS (1959) Stability of Mg-cordierite. Bull Geol Soc Amer 70:1672 (abstract)Google Scholar
  86. Seifert F (1976) Stability of the assemblage cordierite+K feldspar+Quartz. Contrib Mineral Petrol 51:179–185Google Scholar
  87. Shaw DM (1956) Geochemistry of pelitic rocks, III. Bull Geol Soc Am 67:919–934Google Scholar
  88. Shaw HR (1963) The four-phase curve sanidine-quartz-liquid-gas between 500 and 4000 bars. Am Mineral 48:883–896Google Scholar
  89. Spear FS, Selverstone J (1983) Quantitative P-T paths from zoned minerals: theory and tectonic applications. Contrib Mineral Petrol 83:348–357Google Scholar
  90. Storre B (1972) Dry melting of muscovite+quartz in the range Ps=7 kb to Ps=20 kb. Contrib Mineral Petrol 37:87–89Google Scholar
  91. Storre B, Karotke E (1972) Experimental data on melting reactions of muscovite+quartz in the system K2O-Al2O3-SiO2-H2O to 20 kb water pressure. Contrib Mineral Petrol 36:343–345Google Scholar
  92. Thompson AB (1976) Mineral reactions in pelitic rocks: I Prediction of P-T-X (Fe Mg) phase relations. II Calculation of some P-T-X (Fe-Mg) phase relations. Am J Sci 276:401–454Google Scholar
  93. Thompson AB (1982) Dehydration melting of pelitic rocks and the generation of H2O-undersaturated granitic liquids. Am J Sci 282:1567–1595Google Scholar
  94. Thompson AB, Algor JR (1977) Model systems for anatexis of pelitic rocks. I Theory of melting relations in the system KAlO2-NaAlO2-Al2O3-H2O. Contrib Mineral Petrol 3:247–269Google Scholar
  95. Thompson AB, Tracy RJ (1979) Model systems for anatexis of pelitic rocks. II Facies series melting and reactions in the system CaO-KAlO2-NaAlO2-Al2O3-SiO2-H2O. Contrib Mineral Petrol 70:429–438Google Scholar
  96. Turner FJ, Verhoogen J (1960) Igneous and metamorphic petrology. McGraw-Hill book company, Inc New-York Toronto London, 694 ppGoogle Scholar
  97. Tuttle OF, Bowen NL (1958) Origin of granite in the light of experimental studies in the system NaAlSi3O8-KAlSi3O8-SiO2-H2O. Geol Soc Amer Mem 74:153 pGoogle Scholar
  98. vanDer Molen I, Paterson MS (1979) Experimental deformation of partially-melted granite. Contrib Mineral Petrol 70:229–318Google Scholar
  99. Vielzeuf D (1980a) Orthopyroxene and cordierite secondary assemblages in the granulitic paragneisses from Lherz and Saleix (French Pyrenees). Bull Minéral 103:66–78Google Scholar
  100. Vielzeuf D (1980b) Pétrologie des écailles granulitiques de la région de Lherz (Ariège-Zone Nord-Pyrénéenne). Introduction à l'étude expérimentale de l'association grenat (Alm-Pyr) -feldspath potassique. Thèse Sème cycle, Clermont-Ferrand, 219 pGoogle Scholar
  101. Vielzeuf D (1983) The spinel and quartz associations in high grade xenoliths from Tallante (SE Spain) and their potential use in geothermometry and barometry. Contrib Mineral Petrol 82:301–311Google Scholar
  102. Vielzeuf D (1984) Relations de phases dans le faciès granulite et implications géodynamiques. L'exemple ndes granulites des Pyrénées. Thèse Doctorat d'Etat, Clermont-Ferrand, 288 pGoogle Scholar
  103. Vielzeuf D, Boivin P (1984) An algorithm for the construction of petrogenetic grids — Application to some equilibria in granulitic paragneisses. Am J Sci 284:760–791Google Scholar
  104. Vielzeuf D, Kornprobst J (1984) Crustal splitting and the emplacement of the pyrenean lherzolites and granulites. Earth Planet Sci Lett 67:87–96Google Scholar
  105. Vogel DE (1967) Petrology of an eclogite and pyrigarnite-bearing polymetamorphic rock complex at Cabo Ortegal, NW Spain. Leidse Geol Med 40:121–213Google Scholar
  106. Waard D de (1965) A proposed subdivision of the granulite facies. Am J Sci 263:455–461Google Scholar
  107. Waters DJ (1986) Metamorphic history of sapphirine-bearing and related magnesian gneisses from Namaqualand, South Africa. J Petrol 27:541–565Google Scholar
  108. Wendlandt RF (1981) Inflence of CO2 on melting of model granulite facies assemblages: a model for the genesis of charnockites. Am Mineral 66:1164–1174Google Scholar
  109. White AJR, Chappell BW (1983) Granitoid types and their distribution in the Lachlan fold belt, Southeastern Australia. Geol Soc Am Mem 19:21–34Google Scholar
  110. Whitney JA (1975) The effects of pressure, temperature, and XH2O on phase assemblage in four synthetic rock compositions. J Geol 83:1–31Google Scholar
  111. Wones DR, Dodge FCW (1966) On the stability of phlogopite. Geol Soc Am Spec Pap 101:242 (abstr)Google Scholar
  112. Wones DR, Dodge FCW (1977) The stability of phlogopite in the presence of quartz and diopside. In: DG Fraser (ed) Thermodynamics in Geology. D Reidel, Dordrecht, 229–247Google Scholar
  113. Yoder HS Jr, Kushiro I (1969) Melting of a hydrous phase: phlogopite. Am J Sci 267A:558–582Google Scholar

Copyright information

© Springer-Verlag 1988

Authors and Affiliations

  • Daniel Vielzeuf
    • 1
  • John R. Holloway
    • 2
  1. 1.Département de Géologie, UA 10Clermont-FerrandFrance
  2. 2.Departments of Chemistry and GeologyArizona State UniversityTempe-AZUSA

Personalised recommendations