Advertisement

Archive for Rational Mechanics and Analysis

, Volume 117, Issue 1, pp 53–96 | Cite as

Materials with elastic range: A theory with a view toward applications. Part III: Approximate constitutive relations

  • M. Lucchesi
  • D. R. Owen
  • P. Podio-Guidugli
Article

Keywords

Neural Network Complex System Nonlinear Dynamics Electromagnetism Constitutive Relation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Lucchesi, M., & P. Podio-Guidugli, Materials with elastic range: A theory with a view toward applications. Part I. Arch. Rational Mech. Anal. 102, 23–43 (1988).Google Scholar
  2. 2.
    Lucchesi, M., & P. Podio-Guidugli, Materials with elastic range: A theory with a view toward applications. Part II. Arch. Rational Mech. Anal. 110, 9–42 (1990).Google Scholar
  3. 3.
    Nagtegaal, J. C., & J. E. De Jong, Some aspects of non-isotropic workhardening in finite strain plasticity, pp. 65–102 of Proc. Workshop on Plasticity of Metals at Finite Strain: Theory, Experiment and Computation, E. H. Lee & R. L. Mallett, Eds., Stanford University, 1983.Google Scholar
  4. 4.
    Reed, K. W., & S. N. Atluri, Constitutive modeling and computational implementation for finite strain plasticity. Int. J. Plasticity 1, 63–87 (1985).Google Scholar
  5. 5.
    Lucchesi, M., A. Pagni, & P. Podio-Guidugli, On the choice of convected derivatives and hardening rules in modelling plastic flow of metals, pp. 94–96 of Proceedings of Xth International Congress on Rheology, Vol II, Sydney, 14–19 August 1988. P. H. T. Uhlherr Ed., Australian Society of Rheology, 1988.Google Scholar
  6. 6.
    Lucchesi, M., & A. Pagni, Approximate constitutive relations for Hadamard-v. Mises ideally plastic materials. To appear in Int. J. Plasticity.Google Scholar
  7. 7.
    Podio-Guidugli, P., & E. Virga, Transversely isotropic elasticity tensors. Proc. Royal Soc. London A 411, 85–95 (1987).Google Scholar
  8. 8.
    Owen, D. R., A mechanical theory of material with elastic range. Arch. Rational Mech. Anal. 37, 85–110 (1970).Google Scholar
  9. 9.
    Truesdell, C., A First Course in Rational Continuum Mechanics. Vol I. New York: Academic Press, 1977.Google Scholar
  10. 10.
    Lucchesi, M., & P. Podio-Guidugli, On the characterization of plastic loading in the theory of materials with elastic range, pp. 331–334 of Anisotropy and Localization of Plastic Deformation, Proceedings of Plasticity '91: the Third International Symposium on Plasticity and its Current Applications, Grenoble, 12–16 August, 1991. J.-P. Boehler & A. S. Khan Eds., Elsevier Applied Science.Google Scholar
  11. 11.
    Lucchesi, M., & P. Podio-Guidugli, On the constitutive equations of elastic-plastic materials when the elastic deformations and its time rate are small, pp. 315–318 of Proceedings of Plasticity '89, the Second Inter. Symp. on Plasticity and its Current Applications, Tsu, Japan 31 July – 4 August 1989. Khan, A. S. & M. Tokuda, Eds., Pergamon Press, 1989.Google Scholar
  12. 12.
    Truesdell, C., & W. Noll, The Non-Linear Field Theories of Mechanics. Handbuch der Physik III/3, S. Flügge, Ed., Berlin, Heidelberg, New York: Springer-Verlag, 1965.Google Scholar
  13. 13.
    Lucchesi, M., Esistenza e unicità dello sforzo per materiali idealmente plastici soggetti a deformazioni finite. Bollettino U. M. I. 4-B, 1–16 (1990).Google Scholar
  14. 14.
    Degl'Innocenti, S., C. Padovani & G. Pasquinelli, An improved numerical method to integrate the equation of motion in finite elastoplasticity problems, pp. 335–346 of Proceedings of the 2nd International Conference on Computational Plasticity: Models, Software and Applications, Part I, Barcelona, 18–22 September 1989. D. R. J. Owen, E. Hinton & H. Oñate, Eds., Swansea: Pineridge Press, 1989.Google Scholar
  15. 15.
    Lee, E. H., R. L. Mallet, & T. B. Wertheimer, Stress analysis for isotropic hardening in finite-deformation plasticity. J. Appl. Mech. 50, 554–560 (1983).Google Scholar
  16. 16.
    Dafalias, Y., Corotational rates for kinematic hardening at large plastic deformations. J. Appl. Mech. 50, 561–565 (1983).Google Scholar
  17. 17.
    Lucchesi, M., & P. Podio-Guidugli, Materials with elastic range and the possibility of stress oscillations in pure shear, pp 71–80 of Proceedings of the International Conference on Computational Plasticity: Models, Software & Applications, Part I, Barcelona, 6–10 April 1987. D. R. J. Owen, E. Hinton & H. Oñate, Eds., Swansea: Pineridge Press, 1987.Google Scholar
  18. 18.
    Prager, W. & P. Hodge, Theory of Perfectly Plastic Solids. New York: Dover, 1968.Google Scholar
  19. 19.
    Hill, R., The Mathematical of Plasticity. Oxford: Oxford University Press, 1950.Google Scholar

Copyright information

© Springer-Verlag 1992

Authors and Affiliations

  • M. Lucchesi
    • 1
    • 2
    • 3
  • D. R. Owen
    • 1
    • 2
    • 3
  • P. Podio-Guidugli
    • 1
    • 2
    • 3
  1. 1.Istituto CNUCE - C.N.R.PisaItaly
  2. 2.Department of MathematicsCarnegie Mellon UniversityPittsburgh
  3. 3.Dipartimento di Ingegneria CivileUniversità di Roma, 2RomaItaly

Personalised recommendations