Archive for Rational Mechanics and Analysis

, Volume 122, Issue 4, pp 323–351

The dual Least Action Problem for an ideal, incompressible fluid

  • Y. Brenier
Article

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    V. I. Arnold & B. Khesin, Topological methods in hydrodynamics, Ann. Rev. Fluid Mech. 24 (1992) 145–166.Google Scholar
  2. 2.
    V. I. Arnold, Sur la géométrie différentielle des groupes de Lie de dimension infinie et ses applications à l'hydrodynamique, Ann. Inst. Fourier 16 (1966) 319–361.Google Scholar
  3. 3.
    J.-P. Bourguignon & H. Brezis, Remarks on the Euler equations, J. Funct. Anal. 15 (1974) 341–363.Google Scholar
  4. 4.
    Y. Brenier, The least action principle and the related concept of generalized flows for incompressible inviscid fluids, J. Amer. Math. Soc. 2 (1990) 225–255.Google Scholar
  5. 5.
    Y. Brenier, Polar factorization and monotone rearrangement of vector-valued functions, Comm. Pure Appl. Math. 64 (1991) 375–417.Google Scholar
  6. 6.
    Y. Brenier, Le problème du plus court chemin en hydrodynamique incompressible, Journées Equations aux dérivées partielles, Saint-Jean de Monts, Juin 1992, Société mathématique de France.Google Scholar
  7. 7.
    H. Brezis, Analyse fonctionnelle, Masson, 1983, Paris.Google Scholar
  8. 8.
    B. Dacorogna & J. Moser, On a PDE involving the jacobian determinant, Ann. Inst. Henri Poincaré Analyse non-linéaire 7 (1990) 1–26.Google Scholar
  9. 9.
    R. DiPerna & A. Majda, Oscillations and concentrations in weak solutions of the incompressible fluid equations, Comm. Math. Phys. 108 (1987) 667–689.Google Scholar
  10. 10.
    D. Ebin & J. Marsden, Groups of diffeomorphisms and the motion of an incompressible fluid, Ann. Math. 92 (1970) 102–163.Google Scholar
  11. 11.
    I. Ekeland, The Hopf-Rinow theorem in infinite dimension, J. Diff. Geom. 13 (1978) 287–301.Google Scholar
  12. 12.
    A. Majda, The interaction of nonlinear analysis and modern applied mathematics, Proceedings of the International Congress of Mathematicians, Kyoto 1990, Springer, 1991.Google Scholar
  13. 13.
    C.Marchioro & M. Pulvirenti, Lecture notes on the Euler equations, to appear.Google Scholar
  14. 14.
    J.-J. Moreau, Une méthode de cinématique fonctionnelle en hydrodynamique, C.R. Acad. Sci. Paris 249 (1959) 2156–2158.Google Scholar
  15. 15.
    S. T. Rachev, The Monge-Kantorovich mass transference problem, Th. Prob. Appl. 49 (1985) 647–676.Google Scholar
  16. 16.
    M. Roesch, manuscript, 1992.Google Scholar
  17. 17.
    P. Rouchon, Jacobi equations, Riemannian curvature and the hydrodynamics of a perfect incompressible fluid, preprint.Google Scholar
  18. 18.
    A. I. Shnirelman, On the geometry of the group of diffeomorphisms and the dynamics of an ideal incompressible fluid, Math. Sbornik USSR 56 (1987) 79–105.Google Scholar
  19. 19.
    L. Tartar, The compensated compactness method applied to systems of conservation laws, Systems of nonlinear Partial Differential Equations, ed. J. M. Ball, Reidel, 1983, Dordrecht.Google Scholar
  20. 20.
    L. C. Young, Lectures on the calculus of variations and optimal control theory, Chelsea, 1980, New YorkGoogle Scholar

Copyright information

© Springer-Verlag 1993

Authors and Affiliations

  • Y. Brenier
    • 1
  1. 1.Laboratoire d'Analyse NumériqueUniversité de Paris 6Paris Cedex 05

Personalised recommendations