Archive for Rational Mechanics and Analysis

, Volume 124, Issue 2, pp 157–199

A justification of nonlinear properly invariant plate theories

  • D. D. Fox
  • A. Raoult
  • J. C. Simo


A single asymptotic derivation of three classical nonlinear plate theories is presented in a setting which preserves the frame-invariance properties of three-dimensional finite elasticity. By a successive scaling of the external loading on the three-dimensional body, the nonlinear membrane theory, the nonlinear inextensional theory and the von Kármán equations are derived as the leading-order terms in the asymptotic expansion of finite elasticity. The governing equations of the nonlinear inextensional theory are of particular interest where 1) plane-strain kinematics and plane-stress constitutive equations are derived simultaneously from the asymptotic analysis, 2) the theory can be phrased as a minimization problem over the space of isometric deformations of a surface, and 3) the local equilibrium equations are identical to those arising in the one-director Cosserat shell model. Furthermore, it can be concluded that with a regular, single-scale asymptotic expansion it is not possible to obtain a system of plate equations in which finite membrane strain and finite bending strain occur simultaneously in the leading-order term of an asymptotic analysis.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Antman, S. S., 1972, The Theory of Rods, Handbuch der Physik Vol. Via/2, Mechanics of Solids II, C. Truesdell, ed., Springer-Verlag, Berlin.Google Scholar
  2. 2.
    Antman, S. S., 1976, Ordinary Differential Equations of Nonlinear Elasticity I: Foundations of the Theories of Non-linearly Elastic Rods and Shells, Arch. Rational Mech. Anal. 61, 307–351.Google Scholar
  3. 3.
    Antman, S. S., & Calderer, M. C., 1985, Asymptotic Shapes of Inflated Noncircular Elastic Rings, Math. Proc. Cam. Phil. Soc. 97, 357–379.Google Scholar
  4. 4.
    Antman, S. S., & Marlow, R. S., 1991, Material Constraints, Compatibility, and Langrange Multipliers. Applications to Rod and Shell Theories, Arch. Rational Mech. Anal. 116, 257–299.Google Scholar
  5. 5.
    Antman, S. S., & Pierce, J. F., 1990, The Intricate Global Structure of Buckled States of Compressible Columns, SIAM Appl. Math. 50, 395–419.Google Scholar
  6. 6.
    Ball, J. M., 1977, Convexity Conditions and Existence Theorems in Nonlinear Elasticity, Arch. Rational Mech. Anal. 63, 337–403.Google Scholar
  7. 7.
    Casey, J., & Naghdi, P. M., 1981, An Invariant Infinitesimal Theory of Motions Superposed on a Given Motion, Arch. Rational Mech. Anal. 76, 355–391.Google Scholar
  8. 8.
    Ciarlet, P. G., 1980, A Justification of the von Kármán Equations, Arch. Rational Mech. Anal. 73, 349–389.Google Scholar
  9. 9.
    Ciarlet, P. G., 1988, Mathematical Elasticity, Vol. I: Three-dimensional Elasticity, North-Holland, Amsterdam.Google Scholar
  10. 10.
    Ciarlet, P. G., 1990, Plates and Junctions in Elastic Multi-structures: An Asymptotic Analysis, Springer-Verlag, Berlin.Google Scholar
  11. 11.
    Ciarlet, P. G., & Destuynder, P., 1979, A Justification of a Nonlinear Model in Plate Theory, Comp. Meth. Appl. Mech. Engng. 17/18, 227–258.Google Scholar
  12. 12.
    Cimetière, A., Geymonat, G., Le Dret, H., Raoult, A., & Tuter, B., 1988, Asymptotic Theory and Analysis for Displacements and Stress Distribution in Nonlinear Elastic Straight Slender Rods, J. Elasticity 19, 111–161.Google Scholar
  13. 13.
    Cosserat, E. & F., 1909, Théorie des Corps Déformables, Appendix, pp. 953–1173, of Chwolson's Traité de Physique, 2nd edition, Paris.Google Scholar
  14. 14.
    Davet, J. L., 1986, Justification de modèles de plaques non linéaires pour des lois des comportement générales, Modelisation Math. Anal. Num. 20, 225–249.Google Scholar
  15. 15.
    Do Carmo, M. P., 1976, Differential Geometry of Curves and Surfaces, Prentice-Hall, Englewood Cliffs.Google Scholar
  16. 16.
    Ericksen, J. L., & Truesdell, C., 1958, Exact Theory of Stress and Strain in Rods and Shells, Arch. Rational Mech. Anal. 1, 295–323.Google Scholar
  17. 17.
    Fox, D. D., Raoult, A., & Simo, J. C., 1992, Invariant Asymptotic Models for Nonlinear Elastic Thin Structures, C. R. Acad. Sci. Paris, Ser. I, 315, 235–240.Google Scholar
  18. 18.
    Friedrichs, K. O., & Dressler, R. F., 1961, A Boundary-Layer Theory for Elastic Plates, Comm. Pure Appl. Math. 14, 1–33.Google Scholar
  19. 19.
    Goldenveizer, A. L., 1964, The principles of reducing three-dimensional problems of elasticity to two-dimensional problems of the theory of plates and shells, Proc. 11th International Congress Applied Mechanics, 306–311.Google Scholar
  20. 20.
    Goldenveizer, A, L., 1980, Asymptotic method in the theory of shells, Proc. 15th International Congress Applied Mechanics, 91–104.Google Scholar
  21. 21.
    Goldenveizer, A. L., 1976, Theory of Thin Elastic Shells, Nauka, Moscow.Google Scholar
  22. 22.
    Green, A. E., 1962, On the theory of thin elastic shells, Proc. Roy. Soc. London A269, 143–160Google Scholar
  23. 23.
    Green, A. E., 1963, Boundary layer equations in the theory of thin elastic shells, Proc. Roy. Soc. London A269, 481–491.Google Scholar
  24. 24.
    Green, A. E., & Zerna, W., 1968, Theoretial Elasticity, 2nd ed., Oxfort University Press.Google Scholar
  25. 25.
    John, F., 1965, Estimates for the Derivatives of the Stresses in a Thin Shell and Interior Shell Equations, Comm. Pure Appl. Math. 18, 235–267.Google Scholar
  26. 26.
    Karwowski, A. J., 1990, Asymptotic Models for a Long, Elastic Cylinder, J. Elasticity 24, 229–287.Google Scholar
  27. 27.
    Love, A. E. H., 1927, Mathematical Theory of Elasticity, Cambridge University Press.Google Scholar
  28. 28.
    Naghdi, P. M., 1972, The Theory of Shells, Handbuch der Physik, Vol. VIa/2, Mechanics of Solids II, C. Truesdell, ed., Springer-Verlag, Berlin.Google Scholar
  29. 29.
    Raoult, A., 1988, Doctoral Dissertation, Université Pierre et Marie Curie.Google Scholar
  30. 30.
    Reissner, E., 1964, On the Derivation of the Theory of Thin Elastic Shells, J. Math. Phys. 43, 263–277.Google Scholar
  31. 31.
    Rivlin, R. S., & Ericksen, J. L., 1955, Stress-Deformation Relations for Isotropic Materials, J. Rational Mech. Anal. 4, 323–425.Google Scholar
  32. 32.
    Sanchez-Palencia, E., 1989, Statique et dynamique des coques minces, I & II, C. R. Acad. Sci. Paris, Ser. I, 309, 411–412, 531–537.Google Scholar
  33. 33.
    Simo, J. C., & Fox, D. D., 1989, On a Stress Resultant Geometrially Exact Shell Model. Part I: Formulation and Optimal Parametrization, Comp. Meth. Appl. Mech. Engng. 72, 267–304.Google Scholar
  34. 34.
    Simo, J. C., Lewis, D., & Marsden, J. E., 1991, Stability of Relative Equilibria. Part I: The Reduced Energy Momentum Method, Arch. Rational Mech. Anal. 115, 15–59.Google Scholar
  35. 35.
    Simo, J. C., Marsden, J. E., & Krishnaprasad, P. S., 1988, The Hamiltonian Structure of Elasticity. The Convective Representation of Solids, Rods and Plates, Arch. Rational Mech. Anal. 104, 125–183.Google Scholar
  36. 36.
    Simo, J. C., Posbergh, T., & Marsden, J. E., 1991, Stability of Relative Equilibria. Part II: Application to Nonlinear Elasticity, Arch. Rational Mech. Anal. 115, 61–100.Google Scholar
  37. 37.
    Simo, J. C., Rifai, M. S., & Fox, D. D., 1990, On a Stress Resultant Geometrically Exact Shell Model. Part IV: Variable Thickness Shells with Through-the-Thickness Stretching, Comp. Meth. Appl. Mech. Engng. 80, 91–126.Google Scholar
  38. 38.
    Simo, J. C., & Vu-Quoc, L., 1988, The Role of Nonlinear Theories in the Dynamics of Fast Rotating Flexible Structures, J. Sound Vibration 119, 487–508.Google Scholar
  39. 39.
    Stoker, J. J., 1969, Differential Geometry, Wiley-Interscience, New York.Google Scholar
  40. 40.
    Truesdell, C., & Toupin, R. A., 1960, The Classical Field Theories in S. Flügge's Handbuch der Physik, Vol. III/1, Springer-Verlag, Berlin.Google Scholar
  41. 41.
    Truesdell, C., & Noll, W., 1965, The Nonlinear Field Theories in S. Flügge's Handbuch der Physik, Vol. III/3, Springer-Verlag, Berlin.Google Scholar
  42. 42.
    Valent, T., 1988, Boundary Value Problems of Finite Elasticity, Springer-Verlag, Berlin.Google Scholar

Copyright information

© Springer-Verlag 1993

Authors and Affiliations

  • D. D. Fox
    • 1
    • 2
    • 3
  • A. Raoult
    • 1
    • 2
    • 3
  • J. C. Simo
    • 1
    • 2
    • 3
  1. 1.Hibbitt, Karlsson & Sorensen, Inc.Pawtucket
  2. 2.Laboratoire de Modelisation et CalculUniversité J. FourierGrenoble cedex
  3. 3.Division of Applied MechanicsStanford UniversityStanford

Personalised recommendations