Advertisement

Archive for Rational Mechanics and Analysis

, Volume 116, Issue 3, pp 257–299 | Cite as

Material constraints, lagrange multipliers, and compatibility. Applications to rod and shell theories

  • Stuart S. Antman
  • Randall S. Marlow
Article

Keywords

Neural Network Complex System Nonlinear Dynamics Electromagnetism Shell Theory 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. S. S. Antman (1972), The Theory of Rods, in Handbuch der Physik, Vol. VIa/2, C. Truesdell, ed., Springer-Verlag, 641–703.Google Scholar
  2. S. S. Antman (1976a), Ordinary differental equations of one-dimensional nonlinear elasticity I: Foundations of the theories of nonlinearly elastic rods and shells, Arch. Rational Mech. Anal. 61, 307–351.Google Scholar
  3. S. S. Antman (1976b), Ordinary differental equations of one-dimensional nonlinear elasticity II: Existence and regularity theory for conservative problems, Arch. Rational Mech. Anal. 61, 353–393.Google Scholar
  4. S. S. Antman (1982), Material constraints in continuum mechanics, Atti Accad. Naz. Lincei Rend. Cl. Sci. Fis. Mat. Natur. (8) 70, 256–264.Google Scholar
  5. S. S. Antman (1983), Regular and singular problems for large elastic deformations of tubes, wedges, and cylinders, Arch. Rational Mech. Anal. 83, 1–52, Corrigenda, ibid. 95 (1986) 391–393.Google Scholar
  6. S. S. Antman & J. E. Osborn (1979), The principle of virtual work and integral laws of motion, Arch. Rational Mech. Anal. 69, 231–262.Google Scholar
  7. S. S. Antman & W. H. Warner (1966), Dynamical theory of hyperelastic rods, Arch. Rational Mech. Anal. 23, 35–352.Google Scholar
  8. J. M. Ball (1981), Remarques sur l'existence et la régularité des solutions d'élastostatique nonlinéaire, in Recent Contributions to Nonlinear Partial Differential Equations, H. Berstycki & H. Brezis, eds., Pitman, 50–62.Google Scholar
  9. M. F. Beatty & M. A. Hayes (1992), Deformations of an elastic, internally constrained material. Part 1: Homogeneous deformations, J. Elasticity, to appear.Google Scholar
  10. J. F. Bell (1985), Contemporary perspectives in finite strain plasticity, Int. J. Plasticity 1, 3–27.Google Scholar
  11. F. Brezzi & M. Fortin (1991), Mixed and Hybrid Finite Element Methods, (to appear).Google Scholar
  12. P. G. Ciarlet (1990), Plates and Junctions in Elastic Multi-Structures, Masson, Springer-Verlag.Google Scholar
  13. P. G. Ciarlet & J. Nečas (1987), Injectivity and self-contact in nonlinear elasticity, Arch. Rational Mech. Anal. 97, 171–188.Google Scholar
  14. H. Cohen (1981), Pseudo-rigid bodies, Util. Math. 20, 221–247.Google Scholar
  15. H. Cohen & R. Muncaster (1988), The Theory of Pseudo-Rigid Bodies, Springer-Verlag.Google Scholar
  16. F. Davi (1991), The theory of Kirchhoff rods as an exact consequence of three-dimensional elasticity, J. Elasticity, to appear.Google Scholar
  17. D. G. Ebin & R. A. Saxton (1986), The initial-value problem for elastodynamics of incompressible bodies, Arch. Rational Mech. Anal. 94, 15–38.Google Scholar
  18. J. L. Ericksen (1955), Deformations possible in every compressible, perfectly elastic material, Z. angew. Math. Phys. 34, 126–128.Google Scholar
  19. J. L. Ericksen (1986), Constitutive theory for some constrained elastic crystals, Int. J. Solids Structures 22, 951–964.Google Scholar
  20. J. L. Ericksen & R. S. Rivlin (1954), Large elastic deformations of homogeneous anisotropic materials, J. Rational Mech. Anal. 3, 281–301.Google Scholar
  21. A. F. Filippov (1985), Differential Equations with Discontinuous Right-Hand Sides (in Russian), Nauka, English transl., 1988, Kluwer.Google Scholar
  22. A. E. Green, N. Laws & P. M. Naghdi (1967), A linear theory of straight elastic rods, Arch. Rational Mech. Anal. 25, 285–298.Google Scholar
  23. A. E. Green, N. Laws & P. M. Naghdi (1968), Rods, plates and shells, Proc. Camb. Phil. Soc. 64, 895–913.Google Scholar
  24. P. Hartman (1964), Ordinary Differential Equations, Wiley, New York.Google Scholar
  25. G. E. Hay (1942), The finite displacement of thin rods, Trans. Amer. Math. Soc. 51, 65–102.Google Scholar
  26. M. W. Hirsch & S. Smale (1972), Differential Equations, Dynamical Systems, and Linear Algebra, Academic Press.Google Scholar
  27. W. T. Koiter (1970), On the foundations of the linear theory of thin elastic shells, Proc. Kon. Ned. Akad. Wetesch. B 73, 169–195.Google Scholar
  28. H. Le Dret (1985), Constitutive laws and existence questions in incompressible nonlinear elasticity, J. Elasticity 15, 369–387.Google Scholar
  29. P. Le Tallec & J. T. Oden (1981), Existence and characterization of hydrostatic pressure in finite deformations of incompressible elastic bodies, J Elasticity 11, 341–357.Google Scholar
  30. D. G. Luenberger (1969), Optimization by Vector Space Methods, Wiley.Google Scholar
  31. L. A. Lyusternik (1934), On constrained extrema of functionals, Mat. Sb. 41, 390–401.Google Scholar
  32. R. S. Marlow (1989), On the linearized stress response of an internally constrained elastic material, Doctoral Dissertation, Univ. Illinois, Urbana.Google Scholar
  33. A. Mielke (1990), Normal hyperbolicity of center manifolds and Saint-Venant's principle, Arch. Rational Mech. Anal. 110, 353–372.Google Scholar
  34. D. Morgenstern & I. Szabó (1961), Vorlesungen über theoretische Mechanik, Springer.Google Scholar
  35. J. Moser (1965), On the volume element on a manifold, Trans. Amer. Math. Soc. 120, 286–294.Google Scholar
  36. P. M. Naghdi (1972), The Theory of Shells, in Handbuch der Physik, Vol. VIa/2, C. Truesdell, ed., Springer-Verlag, 425–640.Google Scholar
  37. W. Noll (1966), The foundations of mechanics, in Non-Linear Continuum Theories (C.I.M.E. Conference), G. Grioli & C. Truesdell, eds., Cremonese, 159–200.Google Scholar
  38. V. V. Novozhilov (1948), Foundations of the Nonlinear Theory of Elasticity (in Russian), Gostekhteorizdat, English translation, 1953, Graylock Press.Google Scholar
  39. P. Podio-Guidugli (1989), An exact derivation of the thin plate equation, J. Elasticity 22, 121–133.Google Scholar
  40. P. Podio-Guidugli (1990), Constrained elasticity, Atti Accad. Naz. Lincei Rend. Cl. Sci. Fis. Mat. Natur. (9) 1, 341–350.Google Scholar
  41. M. Renardy (1986), Some remarks on the Navier-Stokes equations with a pressuredependent viscosity, Comm. Partial Diff. Eqs. 11, 779–793.Google Scholar
  42. G. de Rham (1973), Variétés Différentiables, 3rd edn., Hermann.Google Scholar
  43. O. Richmond & W. A. Spitzig (1980), Pressure dependence and dilatancy of plastic flow, in Theoretical and Applied Mechanics, Proc. XV Intl. Cong., F. P. J. Rimrott & B. Tabarrok, eds., North Holland, 377–386.Google Scholar
  44. T. I. Seidman & P. Wolfe (1988), Equilibrium states of an elastic conducting rod in a magnetic field, Arch. Rational Mech. Anal. 102, 307–329.Google Scholar
  45. F. Sidoroff (1978), Sur l'équation tensorielle AX+XA=H, C. R. Acad. Sci. Paris A 286, 71–73.Google Scholar
  46. R. Temam (1977), Navier-Stokes Equations, North-Holland.Google Scholar
  47. T. C. T. Ting (1985), Determination of C 1/2, C −1/2 and more general isotropic tensor functions of C, J. Elasticity 15, 319–323.Google Scholar
  48. C. Truesdell (1977), A First Course in Rational Continuum Mechanics, Vol. 1, Academic Press.Google Scholar
  49. C. Truesdell & W. Noll (1965), The Non-linear Field Theories of Mechanics, in Handbuch der Physik III/3, Springer-Verlag.Google Scholar
  50. C. Truesdell & R. A. Toupin (1960), The Classical Field Theories, in Handbuch der Physik III/1, Springer-Verlag.Google Scholar
  51. E. Volterra (1956), Equations of motion for curved and twisted elastic bars deduced by the “method of internal constraints”, Ing. Arch. 24, 392–400.Google Scholar
  52. E. Volterra (1961), Second approximation of the method of internal constraints and its applications, Int. J. Mech. Sci. 3, 47–67.Google Scholar
  53. J. Wissmann (1991), Doctoral dissertation, Univ. Maryland.Google Scholar

Copyright information

© Springer-Verlag 1991

Authors and Affiliations

  • Stuart S. Antman
    • 1
  • Randall S. Marlow
    • 1
  1. 1.Department of MathematicsUniversity of MarylandCollege Park

Personalised recommendations