Contributions to Mineralogy and Petrology

, Volume 59, Issue 1, pp 1–12 | Cite as

Major, minor, and trace element compositions of peridotitic and basaltic komatiites from the precambrian crust of Southern Africa

  • A. Günter Herrmann
  • Douglas P. Blanchard
  • Larry A. Haskin
  • Jeffrey W. Jacobs
  • Doris Knake
  • Randy L. Korotev
  • Joyce C. Brannon


Major and trace element compositional data are reported for nine mafic and ultramafic rock samples from the Barberton greenstone belt. Rocks from this province are among the oldest fragments of the Earth's crust (∼3.5 b.y.). The data are consistent with an oceanic crust related origin for these rocks. The high abundances of Ni in these samples make their origin by fractional crystallization of a primitive magma unlikely but are consistent with their generation by partial melting of an upper mantle source. The basaltic samples from the Komati formation can be related by small degrees of partial melting of a primitive upper mantle source to the peridotitic komatiite which probably derived from much more extensive partial melting of a similar source. REE and especially Ni abundances limit the proportion of olivine that is permitted in the residue.


Olivine Partial Melting Oceanic Crust Fractional Crystallization Mantle Source 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Allen, R.O., Haskin, L.A., Anderson, M.R., Müller, O.: Neutron activation analysis for 39 elements in small or precious geologic samples. J. Radioanal. Chem. 6, 115–137 (1970)Google Scholar
  2. Allsopp, H.L., Viljoen, M.J., Viljoen, R.P.: Strontium isotopic studies of the mafic and felsic rocks of the Onverwacht group of the Swaziland sequence. Geol. Rundschau 62, 902–917 (1973)Google Scholar
  3. Anhaeusser, C.R.: The evolution of the early Precambrian crust of southern Africa. Phil. Trans. Roy. Soc. London, Ser. A 273, 359–388 (1973)Google Scholar
  4. Bender, M., Broecker, W., Gornitz, V., Middel, U., Kay, R., Sun, S.-S., Biscaye, P.: Geochemistry of three cores from the East Pacific Rise. Earth and Planetary Sci. Letters 12, 425–433 (1971)Google Scholar
  5. Carter, J.L.: Mineralogy and chemistry of the earth's upper mantle based on the partial fusion-partial crystallization model. Geol. Soc. Am. Bull. 81, 2021–2034 (1970)Google Scholar
  6. Denechaud, E.B., Helmke, P.A., Haskin, L.A.: Analysis for the rare-earth elements by neutron activation and Ge(Li) spectrometry. J. Radioanal. Chem. 6, 97–113 (1970)Google Scholar
  7. Frey, F.A., Bryan, W.B., Thompson, G.: Atlantic ocean floor: Geochemistry and petrology of basalts from legs 2 and 3 of the Deep-Sea Drilling Project. J. Geophys. Res. 79, 5507–5528 (1974)Google Scholar
  8. Frey, F.A., Haskin, L.A., Haskin, M.A.: Rare-earth abundances in some ultramafic rocks. J. Geophys. Res. 76, 2057–2070 (1971)Google Scholar
  9. Frey, F.A., Haskin, M.A., Poetz, J.A., Haskin, L.A.: Rare earth abundances in some basic rocks. J. Geophys. Res. 73, 6085–6098 (1968)Google Scholar
  10. Gast, P.W.: Trace element fractionation and the origin of tholeiitic and alkaline magma types. Geochim. Cosmochim. Acta 32, 1057–1086 (1968)Google Scholar
  11. Green, D.H.: Archaen greenstone belts may include terrestrial equivalents of lunar maria? Earth and Planetary Sci. Letters 15, 263–270 (1972)Google Scholar
  12. Green, D.H., Ringwood, A.E.: The genesis of basaltic magmas. Contrib. Mineral. Petrol. 15, 103–190 (1967)Google Scholar
  13. Häkli, T.A., Wright, T.L.: The fractionation of nickel between olivine and augite as a geothermometer. Geochim. Cosmochim. Acta 31, 877–884 (1967)Google Scholar
  14. Haskin, L.A., Allen, R.O., Helmke, P.A., Paster, T.P., Anderson, M.R., Korotev, R.L., Zweifel, K.A.: Rare earths and other trace elements in Apollo 11 lunar samples. Proc. Apollo 11 Lunar Sci. Conf. Geochim. Cosmochim. Acta, Suppl. 1, 2, 1213–1231 (1970)Google Scholar
  15. Henderson, P., Dale, I.M.: The partitioning of selected transition element ions between olivine and groundmass of oceanic basalts. Chem. Geol. 5, 267–274 (1969/1970)Google Scholar
  16. Herrmann, A.G., Knake, D.: Coulometrisches Verfahren zur Bestimmung von Gesamt-, Carbonatund Nichtcarbonat-Kohlenstoff in magmatischen, metamorphen und sedimentären Gesteinen. Z. Anal. Chem. 266, 196–201 (1973)Google Scholar
  17. Herrmann, A.G., Potts, M.J., Knake, D.: Geochemistry of the rare earth elements in spilites from the oceanic and continental crust. Contrib. Mineral. Petrol. 44, 1–16 (1974)Google Scholar
  18. Hubbard, N.J.: A chemical comparison of oceanic ridge, Hawaiian tholeiitic and Hawaiian alkalic basalts. Earth and Planetary Sci. Letters 5, 346–352 (1969)Google Scholar
  19. Jacobs, J.W., Korotev, R.L., Blanchard, D.P., Haskin, L.A.: A well tested procedure for instrumental neutron activation analysis of silicate rocks and minerals. J. Radioanal. Chem. (submitted, 1976)Google Scholar
  20. Jahn, B., Shih, C., Murthy, V.R.: Trace element geochemistry of Archean volcanic rocks. Geochim. Cosmochim. Acta 38, 611–627 (1974)Google Scholar
  21. Jakeš, P., Gill, J.: Rare earth elements and the island arc tholeiitic series. Earth and Planetary Sci. Letters 9, 17–28 (1970)Google Scholar
  22. Kay, R., Hubbard, N.J., Gast, P.W.: Chemical characteristics and origin of oceanic ridge volcanic rocks. J. Geophys. Res. 75, 1585–1613 (1970)Google Scholar
  23. Kosiewicz, S.T., Schomberg, P.J., Haskin, L.A.: Rare earth analysis of USGS rocks SCo-1 and STM-1; Evaluation of standards for homogeneity and of the precision and accuracy of a procedure for neutron activation analysis. J. Radioanal. Chem. 20, 619–626 (1974)Google Scholar
  24. Mysen, B.: Partitioning of samarium and nickel between olivine, orthopyroxene, and liquid; preliminary data at 20 kbar and 1025 ° C. Earth and Planetary Sci. Letters 31, 1–7 (1976)Google Scholar
  25. Philpotts, J.A., Schnetzler, C.C.: Potassium, rubidium, strontium, barium, and rare-earth concentrations in lunar rocks and separated phases. Science 167, 493–495 (1970a)Google Scholar
  26. Philpotts, J.A., Schnetzler, C.C.: Phenocryst-matrix partition coefficients for K, Rb, Sr and Ba, with applications to anorthosite and basalt genesis. Geochim. Cosmochim. Acta 34, 307–322 (1970b)Google Scholar
  27. Piper, D.Z.: Rare earth elements in the sedimentary cycle: A summary. Chem. Geol. 14, 285–304 (1974)Google Scholar
  28. Puchelt, H.: Barium. In: Handbook of geochemistry, Vol. II. Berlin-Heidelberg-New York: Springer 1972Google Scholar
  29. Shaw, D.M.: Development of the early continental crust. Part 1. Use of trace element distribution coefficient models for the protoarchean crust. Can. J. Earth Sci. 9, 1577–1595 (1972)Google Scholar
  30. Shih, C.-Y., Haskin, L.A., Wiesmann, H., Bansal, B.M., Brannon, J.C.: On the origin of high-Ti mare basalts. Proc. 6th Lunar Sci. Conf. Geochim. Cosmochim. Acta, Suppl. 6, 2, 1255–1285 (1975)Google Scholar
  31. Viljoen, M.J., Viljoen, R.P.: An introduction to the geology of the Barberton granite-greenstone terrain. Upper Mantle Project, Spec. Publ. Geol. Soc. S. Afr. 2, 9–28 (1969a)Google Scholar
  32. Viljoen, R.P., Viljoen, M.J.: The effects of metamorphism and serpentinization on the volcanic and associated rocks of the Barberton region. Upper Mantle Project, Spec. Publ. Geol. Soc. S. Afr. 2, 29–53 (1969b)Google Scholar
  33. Viljoen, M.J., Viljoen, R.P.: The geology and geochemistry of the lower ultramafic unit of the Onverwacht group and a proposed new class of igneous rocks. Upper Mantle Project, Spec. Publ. Geol. Soc. S. Afr. 2, 55–85 (1969c)Google Scholar
  34. Viljoen, M.J., Viljoen, R.P.: Evidence for the existence of a mobile extrusive peridotitic magma from the Komati formation of the Onverwacht group. Upper Mantle Project, Spec. Publ. Geol. Soc. S. Afr. 2, 87–112 (1969d)Google Scholar
  35. Viljoen, R.P., Viljoen, M.J.: Evidence for the composition of the primitive mantle and its products of partial melting from a study of the rocks of the Barberton Mountain Land. Upper Mantle Project, Spec. Publ. Geol. Soc. S. Afr. 2, 275–295 (1969e)Google Scholar

Copyright information

© Springer-Verlag 1976

Authors and Affiliations

  • A. Günter Herrmann
    • 1
    • 2
  • Douglas P. Blanchard
    • 3
  • Larry A. Haskin
    • 3
  • Jeffrey W. Jacobs
    • 4
  • Doris Knake
    • 5
  • Randy L. Korotev
    • 6
    • 7
  • Joyce C. Brannon
    • 4
  1. 1.Geochemisches Institut der UniversitätGöttingenFederal Republic of Germany
  2. 2.The Lunar Science InstituteHoustonUSA
  3. 3.NASA Johnson Space CenterHoustonUSA
  4. 4.Lockheed Electronics CorporationHoustonUSA
  5. 5.Seelze/HannoverFederal Republic of Germany
  6. 6.Department of ChemistryUniversity of WisconsinMadison
  7. 7.NASA Johnson Space CenterHoustonUSA

Personalised recommendations