Advertisement

Archive for Rational Mechanics and Analysis

, Volume 120, Issue 3, pp 201–244 | Cite as

Self-accommodation in martensite

  • Kaushik Bhattacharya
Article

Abstract

The shape-memory effect is a phenomenon wherein an apparently plastically deformed specimen recovers all strain when heated above a critical temperature. This is observed in some crystalline solids that undergo martensitic phase transformation. The martensitic transformation is a temperature-induced, diffusionless solid-to-solid phase transformation involving a change in crystalline symmetry. Shape-memory materials are able to transform from the high-temperature austenite to the low-temperature martensite phase without any apparent change in shape. This is known as self-accommodation. Necessary and sufficient conditions that the lattice parameters of a material must satisfy for the material to form a self-accommodating microstructure are derived. The main result states that if the austenite is cubic, the material is self-accommodating if and only if the transformation is volume preserving. On the other hand, if the symmetry of the austenite is not cubic, it is not possible to construct any microstructure that is self-accommodating unless the transformation strain or the Bain strain satisfies additional, rather strict, conditions. These results show good agreement with the available experimental data. The analysis here is significantly different from previous studies because it makes no a priori assumption on the microstructure.

Keywords

Austenite Martensite Phase Transformation Critical Temperature Martensitic Transformation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Adachi, K. & Wayman, C. M., Transformation behaviour of nearly stoichiometric Ni-Mn alloys, and electron microscopic study of θ-phase martensite in Ni -Mn alloys, Met. Trans. A 16A (1985), 1567–1579, 1581–1597.Google Scholar
  2. 2.
    Andersen, N. H., Lebech, B. & Poulsen, H. F., The structural phase diagram and oxygen equilibrium partial pressure of YBa2Cu3O6+x studied by powder diffraction and gas volumetry, Physica C 172 (1990), 31–42.Google Scholar
  3. 3.
    Arlt, G., Twinning in ferroelectric and ferroelastic ceramics: stress relief, J. Mat. Sci. 22 (1990), 2655–2666.Google Scholar
  4. 4.
    Avellaneda, M., Cherkaev, A. V., Lurie, K. A. & Milton, G. W., On the effective conductivity of polycrystals and a three dimensional phase-interchange inequality, J. Appl. Phys. 63 (1988), 4989–5003.Google Scholar
  5. 5.
    Ball, J. M., Convexity conditions and existence theorems in nonlinear elasticity, Arch. Rational Mech. Anal. 63 (1977), 337–403.Google Scholar
  6. 6.
    Ball, J. M., Remarks on the paper “Basic calculus of variations”, Pacific J. Math. 116 (1985), 7–10.Google Scholar
  7. 7.
    Ball, J. M., Currie, J. C. & Olver, P. J., Null Lagrangians, weak continuity and variational problems of arbitrary order, J. Func. Anal. 41 (1981), 135–174.Google Scholar
  8. 8.
    Ball, J. M. & James, R. D., Fine phase mixtures as minimizers of energy, Arch. Rational Mech. Anal. 100 (1987), 13–52.Google Scholar
  9. 9.
    Ball, J. M. & James, R. D., Proposed experimental tests of a theory of fine microstructure and the two well problem, Phil. Trans. Royal Soc. London A 338 (1992), 389–450.Google Scholar
  10. 10.
    Bhattacharya, K., Wedge-like microstructure in martensite, Acta Metall. 39 (1991), 2431–2444.Google Scholar
  11. 11.
    Billington, E. W. & Tate, A., The Physics of Deformation and Flow, Mc-Graw Hill (1960).Google Scholar
  12. 12.
    Birnbaum, H. K. & Read, T. A., Stress induced twin boundary motion in AuCd β′ and β′' alloys, Trans. Met. Soc. AIME 218 (1960), 662–669.Google Scholar
  13. 13.
    Bowles, J. S. & MacKenzie, J. K., The crystallography of martensitic transformations I and II, Acta Metall. 2 (1954), 129–137, 138–147.Google Scholar
  14. 14.
    Bywater, K. A. & Christian, J. W., Martensitic transformations in titanium-tantalum alloys, Phil. Mag. 25 (1972), 1249–1272.Google Scholar
  15. 15.
    Chakravorty, S. & Wayman, C. M., The thermoelastic martensitic transformation in β′ Ni-Al alloys: I. Crystallography and morphology and II. Electron microscopy, Metall. Trans. A 7A (1976), 555–568, 569–582.Google Scholar
  16. 16.
    Chang, L. C. & Read, T. A., Plastic deformation and diffusionless phase changes in metals — the gold-cadmium beta phase, J. Metals Trans. AIME 191 (1951), 47–52.Google Scholar
  17. 17.
    Chipot, M. & Kinderlehrer, D., Equilibrium configurations of crystals, Arch. Rational Mech. Anal. 103 (1988), 237–277.Google Scholar
  18. 18.
    Enami, K. & Nenno, S., Memory effect in Ni-36.8 at. pct. Al martensite, Metall. Trans. 2 (1971), 1487–1490.Google Scholar
  19. 19.
    Ericksen, J. L., Nilpotent energies in liquid crystal theory, Arch. Rational Mech. Anal. 10 (1962), 189–196.Google Scholar
  20. 20.
    Ericksen, J. L., Nonlinear elasticity of diatomic crystals, Int. J. Solids Struc. 6 (1970), 951–957.Google Scholar
  21. 21.
    Ericksen, J. L., On the symmetry and stability of thermoelastic solids, J. Appl. Mech. 45 (1978), 740–744.Google Scholar
  22. 22.
    Ericksen, J. L., On the symmetry of deformable crystals, Arch. Rational Mech. Anal. 72 (1979), 1–13.Google Scholar
  23. 23.
    Ericksen, J. L., Some phase transitions in crystals, Arch. Rational Mech. Anal. 73 (1980), 99–124.Google Scholar
  24. 24.
    Ericksen, J. L., Continuous martensitic transitions in thermoelastic solids, J. Thermal Stresses 4 (1981), 107–119.Google Scholar
  25. 25.
    Ericksen, J. L., The Cauchy and Born hypotheses for crystals, in Phase Transformations and Material Instabilities in Solids (ed. Gurtin, M. E.), Academic Press (1984), 61–78.Google Scholar
  26. 26.
    Ericksen, J. L., Some surface defects in unstressed thermoelastic solids, Arch. Rational Mech. Anal. 88 (1985), 337–345.Google Scholar
  27. 27.
    Ericksen, J. L., Constitutive theory for some constrained elastic crystals, Int. J. Solids Struc. 22 (1986), 951–964.Google Scholar
  28. 28.
    Evans, L. C., Weak Convergence Methods for Nonlinear Partial Differential Equations, Amer. Math. Soc., C.B.M.S. 74 (1990).Google Scholar
  29. 29.
    Firoozye, N. B., Bhattacharya, K., James, R. D. & Kohn, R. V., Restrictions on microstructure, in preparation (1992).Google Scholar
  30. 30.
    Foos, M., Frantz, C. & Gantios, M., Shape memory effect and anelasticity associated with the martensitic transformation in the stoichiometric Fe3Pt alloy, in Shape Memory Effects in Alloys (ed. Perkins, J.), Plenum Press (1975), 407–417.Google Scholar
  31. 31.
    Forsbergh, P. W., Domain structures and phase transitions in barium titanate, Phys. Rev. 76 (1949), 1187–1201.Google Scholar
  32. 32.
    Fosdick, R. L. & Hertog, B., Material symmetry and crystals, Arch. Rational Mech. Anal. 110 (1990), 43–72.Google Scholar
  33. 33.
    Fonseca, I., Variational methods for elastic crystals, Arch. Rational Mech. Anal. 97 (1985), 189–220.Google Scholar
  34. 34.
    Gurtin, M. E., Two phase deformations of elastic solids, Arch. Rational. Mech. Anal. 84 (1983), 1–29.Google Scholar
  35. 35.
    Guttman, L., Crystal structures and transformations in Indium-Thallium solid solutions, J. Metals Trans. AIME 188 (1950), 1472–1477.Google Scholar
  36. 36.
    Hanson, C. G., Rivlin, V. G. & Hatt, B. A., The β-phase transformation of some zirconium-thorium alloys, J. Nuclear Mat. 12 (1964), 83–93.Google Scholar
  37. 37.
    James, R. D., Displacive phase transformations in solids, J. Mech. Phys. Solids 34 (1986), 359–394.Google Scholar
  38. 38.
    James, R. D., The stability and metastability of quartz, in Metastability and Incompletely Posed Problems (eds. Antman, S., Ericksen, T. L., Kinderlehrer, D. & Müller, I.) IMA Vol. 3, Springer-Verlag (1987), 147–176.Google Scholar
  39. 39.
    James, R. D. & Kinderlehrer, D., Theory of diffusionless phase transitions, in Partial Differential Equations and Continuum Models of Phase Transitions (eds. Rascle, M., Serre, D. & Slemrod, M.), Lectures Notes in Physics 344, Springer-Verlag (1989), 51–84.Google Scholar
  40. 40.
    Kinderlehrer, D. & Pedregal, P., Characterizations of Young measures generated by gradients, Arch. Rational Mech. Anal. 115 (1991), 329–365.Google Scholar
  41. 41.
    Krasevec, V., The complex martensite in quenched Ni-Mn alloy, Phys. Stat. Sol. A30 (1975), 241–250.Google Scholar
  42. 42.
    Kudoh, Y., Tokonami, M., Miyazaki, S. & Otsuka, K., Crystal structure of the martensite in Ti-49.2 at. % Ni alloy analyzed by the single crystal X-ray diffraction method, Acta Metall. 33 (1985), 2049–2056.Google Scholar
  43. 43.
    Maki, T. & Tamura, I., Shape memory effect in ferrous alloys, Proc. Int. Conf. Mart. Trans. (1986), 963–970.Google Scholar
  44. 44.
    Masson, D. B. & Barrett, C. S., Effect of deformation and low temperatures on the structure of AgCd and AuZn, Trans. Met. Soc. AIME 212 (1958), 260–265.Google Scholar
  45. 45.
    Miyazaki, S. & Otsuka, K., Development of Shape Memory Alloys, Iron Steel Inst. Jap. 29 (1989), 353–377.Google Scholar
  46. 46.
    Miyazaki, S., Otsuka, K. & Wayman, C. M., The shape memory mechanism associated with the martensitic transformation in TiNi alloys — I. Self-accommodation and II. Variant Coalescence and shape recovery, Acta Metall. 37 (1989), 1873–1884, 1885–1890.Google Scholar
  47. 47.
    Morrey, C. B., Multiple Integrals in the Calculus of Variations, Springer-Verlag (1966).Google Scholar
  48. 48.
    Morton, A. J. & Wayman, C. M., Theoretical and experimental aspects of the “(225)” austenite-martensite transformation in iron alloys, Acta Metall 14 (1966), 1567–1581.Google Scholar
  49. 49.
    Murakami, Y. & Kanchi, S., Microscopic observation of thermoelastic α2 Ni-Zn-Cu martenstite, Trans. Jap. Inst. Metals 18 (1977), 423–426.Google Scholar
  50. 50.
    Murakami, Y., Kanchi, S. & Shimizu, S., Martensitic transformation and elastic properties of the ternary Ni-Zn base β 2 phase alloy, Trans. Jap. Inst. Metals 17 Suppl. (1976), 147–157.Google Scholar
  51. 51.
    Murat, F., Compacité par compensation, Ann. Sci. Norm. Sup. Pisa 5 (1978), 489–507.Google Scholar
  52. 52.
    Murat, F., Compacité par compensation II, in Recent Methods in Nonlinear Analysis (eds. De Giorgi, E., Magenes, E. & Mosco, U.), Pitagora (1979), 245–256.Google Scholar
  53. 53.
    Murat, F. & Tartar, L., Calcul des variations et homogenéisation, Les Méthodes de l'homogenéisation: Théorie et Applications en Physique, Dir. des Etudes et Recherches de l'EDF, Eyrolles, Paris (1985), 319–370.Google Scholar
  54. 54.
    Nittono, O. & Koyoma, Y., Crystal structures and phase transformations in indium rich solid solution, Sci. Rep. Research Inst. Tohoku U. A29 Suppl. 1 (1981), 53–60.Google Scholar
  55. 55.
    Okamoto, H., Oka, M. & Tamura, I., Coupling of thin-plate martensites in an Fe-Ni-C alloy, Trans. Jap. Inst. Metals 19 (1978), 674–684.Google Scholar
  56. 56.
    Okamoto, K., Ichinose, S., Morii, K., Otsuka, K. & Shimizu, K., Crystallography of β 1 γ 1 stress induced martensitic transformation in a Cu-Al-Ni alloy, Acta Metall. 34 (1986), 2065–2073.Google Scholar
  57. 57.
    Pitteri, M., Reconciliation of local and global symmetries of crystals, J. Elasticity 14 (1984), 175–190.Google Scholar
  58. 58.
    Pitteri, M., On ν + 1-lattices, J. Elasticity 15 (1985), 3–25.Google Scholar
  59. 59.
    Saburi, T. & Wayman, C. M., Crystallographic similarities in shape memory martensites, Acta Metall. 27 (1979), 979–995.Google Scholar
  60. 60.
    Serre, D., Formes quadratiques et calcul des variations, J. Math. Pures. Appl. 62 (1983), 117–196.Google Scholar
  61. 61.
    Sohmura, T., Oshima, R. & Fujita, F. E., Thermoelastic FCC-FCT martensitic transformation in Fe-Pd alloys, Scripta Met. 14 (1980), 855–856.Google Scholar
  62. 62.
    Subbarao, E. C., Zirconia — an overview, in Science and Technology of Zirconia (eds. Heuer, A. H. & Hobbs, L. W.), Adv. in Ceramics 3, Amer. Ceramics Soc. (1980), 1–24.Google Scholar
  63. 63.
    Tadaki, T. & Shimizu, K., High tetragonality of the thermoelastic Fe3Pt martensite and small volume change during the transformation, Scripta Metall. 9 (1975), 771–776.Google Scholar
  64. 64.
    Tan, S. & Xu, H., Observations on a CuAlni single crystal, Cont. Mech. Thermodynamics 2 (1990), 241–244.Google Scholar
  65. 65.
    Tartar, L., Compensated compactness and applications to partial differential equations, Nonlinear Analysis and Mechanics (ed. Knops, R. J.), Pitman Research Notes 39 (1978), 136–212.Google Scholar
  66. 66.
    Tas, H., Delaey, L. & Deruyttere, A., The self-accommodating character of the β1 copper aluminum martensite, Metall. Trans. 4 (1973), 2833–2840.Google Scholar
  67. 67.
    Van Tendeloo, G. & Amelinckx, S., Group theoretical considerations concerning domain formation in ordered alloys, Acta Cryst. A30 (1974), 431–440.Google Scholar
  68. 68.
    Van Tendeloo, G., private communication (1991).Google Scholar
  69. 69.
    Watanabe, M. & Wayman, C. M., Crystallography of the martensite transformation in Fe-Al-C alloys, Metall. Trans. 2 (1971), 2229–2236.Google Scholar
  70. 70.
    Wechsler, M. S., Lieberman, D. S. & Read, T. A., On the theory of the formation of martensite, J. Metals Trans. AIME 197 (1953), 1503–1515.Google Scholar
  71. 71.
    Young, L. C., Lectures on the Calculus of Variations and Optimal Control Theory, Saunders (1969).Google Scholar
  72. 72.
    Zanzotto, G., On the material symmetry group of elastic crystals and the Born rule, Arch. Rational Mech. Anal. 121 (1992), 1–36.Google Scholar

Copyright information

© Springer-Verlag 1992

Authors and Affiliations

  • Kaushik Bhattacharya
    • 1
  1. 1.Courant Institute of Mathematical SciencesNew York

Personalised recommendations