Pflügers Archiv

, Volume 423, Issue 5–6, pp 511–518 | Cite as

Patch-clamp recordings from the soma and dendrites of neurons in brain slices using infrared video microscopy

  • G. J. Stuart
  • H. U. Dodt
  • B. Sakmann
Molecular and Cellular Physiology


A description is given of the implementation of infrared differential interference contrast (IR-DIC) video microscopy to an upright compound microscope. Using the improved resolution offered by IR-DIC a procedure is described for making patch-pipette recordings from visually identified neuronal somata and dendrites in brain slices. As an example of the application of this technique to electrophysiological recordings from small neuronal processes in brain slices we describe wholecell current-clamp and cell-attached and excised patchclamp recordings from the apical dendrites of layer V pyramidal neurons in slices of rat neocortex.

Key words

Patch clamp Brain slice Dendrite Video microscopy Neocortex 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Blanton MG, Lo Turco JJ, Kriegstein AR (1989) Whole cell recording from neurons in slices of reptilian and mammalian cerebral cortex. J Neurosci Methods 30:203–210Google Scholar
  2. 2.
    Dodt H-U (1992) Infrared video microscopy of living brain slices. In: Kettenman H, Grantyn R (ed) Practical electrophysiological methods. Wiley-Liss, New York, pp 6–10Google Scholar
  3. 3.
    Dodt H-U, Zieglgänsberger W (1990) Visualizing unstained neurons in living brain slices by infrared DIC-videomicroscopy. Brain Res 537:333–336Google Scholar
  4. 4.
    Edwards FA, Konnerth A, Sakmann B, Takahashi T (1989) A thin slice preparation for patch clamp recordings from neurons of the mammalian central nervous system. Pflügers Arch 414:600–612Google Scholar
  5. 5.
    Hamill OP, Marty A, Neher E, Sakmann B, Sigworth FJ (1981) Improved patch clamp techniques for high-resolution current recordings from cells and cell-free patches. Pflügers Arch 391:85–100Google Scholar
  6. 6.
    Keenan CL, Chapman PF, Chang VC, Brown TH (1988) Videomicroscopy of acute brain slices from amygdala and hippocampus. Brain Res Bull 21:373–383Google Scholar
  7. 7.
    MacVicar BA (1984) Infrared video microscopy to visualize neurons in the in vitro brain slice preparation. J Neurosci Methods 12:133–139Google Scholar
  8. 8.
    Marty A, Neher E (1983) Tight-seal whole-cell recording. In: Sakmann B, Neher E (eds) Single-channel recording. Plenum Press, New York, pp 107–132Google Scholar
  9. 9.
    Sheng M, Tsaur M-L, Jan YN, Jan LY (1992) Subcellular segregation of two A-type K+ channel proteins in rat central neurons. Neuron 9:271–284Google Scholar
  10. 10.
    Sokabe M, Sachs F, Jing Z (1991) Quantitative video microscopy of patch clamped membranes: stress, strain, capacitance, and stretch channel activation. Biophysical J 59:722–728Google Scholar
  11. 11.
    Takahashi T (1978) Intracellular recording from visually identified motoneurons in rat spinal cord slices. Proc R Soc Lond [Biol] 202:417–421Google Scholar
  12. 12.
    Traub RD, Wong RKS, Miles R, Michelson H (1991) A model of a CA3 hippocampal pyramidal neuron incorporating voltage-clamp data on intrinsic conductances. J Neurophysiol 66:635–650Google Scholar
  13. 13.
    Yamamoto C (1975) Recording of electrical activity from microscopically identified neurons of the mammalian brain. Experientia 31:309–311Google Scholar

Copyright information

© Springer-Verlag 1993

Authors and Affiliations

  • G. J. Stuart
    • 1
  • H. U. Dodt
    • 2
  • B. Sakmann
    • 1
  1. 1.Abteilung ZellphysiologieMax-Planck-Institut für medizinische ForschungHeidelbergGermany
  2. 2.Klinisches InstitutMax-Planck-Institut für PsychiatrieMünchen 40Germany

Personalised recommendations