Archive for History of Exact Sciences

, Volume 44, Issue 2, pp 125–146 | Cite as

Newton's solution of the one-body problem

  • Bruce Pourciau
Article

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    E. J. Aiton, The contributions of Isaac Newton, Johann Bernoulli and Jakob Hermann to the inverse problem of central forces, Studia Leibnitiana, Sonderheft 17 (1987) 47–58.Google Scholar
  2. 2.
    J. B. Brackenridge, Newton's mature dynamics and the Principia: a simplified solution to the Kepler problem, Historia Mathematica 16 (1989) 36–45.Google Scholar
  3. 3.
    C. J. Coe, Theoretical Mechanics, The Macmillan Company, New York, 1938.Google Scholar
  4. 4.
    I. B. Cohen & A. Koyré (eds.), Isaac Newton's Philosophiae Naturalis Principia Mathematica, the Third Edition With Variant Readings, Volume I, Harvard University Press, Cambridge, 1972.Google Scholar
  5. 5.
    J. T. Cushing, Kepler's laws and universal gravitation in Newton's Principia, American Journal of Physics 50 (1982) 617–628.Google Scholar
  6. 6.
    P. Frost, Newton's Principia, First Book, Sections I, II, III, Macmillan and Co., London, 1883.Google Scholar
  7. 7.
    A. R. Hall & L. Tilling (eds.), The Correspondence of Isaac Newton, Volume V (1709–1713), Cambridge University Press, New York, 1975.Google Scholar
  8. 8.
    H. Lamb, Dynamics, Cambridge University Press, Cambridge, 1923.Google Scholar
  9. 9.
    A. E. H. Love, Theoretical Mechanics, Cambridge University Press, Cambridge, 1897.Google Scholar
  10. 10.
    E. Mach, The Science of Mechanics: A Critical and Historical Account of Its Development, Sixth Edition, The Open Court Publishing Company, LaSalle, Illinois, 1960.Google Scholar
  11. 11.
    J. Milnor, On the geometry of the Kepler problem, Amer. Math. Monthly 90 (1983) 353–365.Google Scholar
  12. 12.
    E. N. Moore, Theoretical Mechanics, John Wiley & Sons, New York, 1983.Google Scholar
  13. 13.
    I. Newton, Sir Isaac Newton's Mathematical Principles of Natural Philosophy and His System of the World, edited by F. Cajori, translated by A. Motte, University of California Press, Berkeley, 1946.Google Scholar
  14. 14.
    I. Newton, A treatise of the method of fluxions and infinite series, with its applications to the geometry of curve lines, in the Mathematical Works of Isaac Newton, Volume 1, edited by D. T. Whiteside, Johnson Reprint Corporation, New York, 1964.Google Scholar
  15. 15.
    H. Pollard, Mathematical Introduction to Celestial Mechanics, Prentice-Hall, Englewood Cliffs, 1966.Google Scholar
  16. 16.
    B. H. Pourciau, On Newton's proof that inverse-square orbits must be conics, Annals of Science, 48 (1991), 159–172.Google Scholar
  17. 17.
    A. S. Ramsey, Dynamics, Cambridge University Press, Cambridge, 1929.Google Scholar
  18. 18.
    L. G. Taff, Celestial Mechanics: A Computational Guide for the Practitioner, John Wiley & Sons, New York, 1985.Google Scholar
  19. 19.
    W. Thirring, A Course in Mathematical Physics, Volume 1, Springer-Verlag, New York, 1978.Google Scholar
  20. 20.
    C. Truesdell, Essays in the History of Mechanics, Springer-Verlag, Berlin, 1968.Google Scholar
  21. 21.
    R. Weinstock, Dismantling a centuries-old myth: Newton's Principia and inversesquare orbits, American Journal of Physics, 50 (1982) 610–617.Google Scholar
  22. 22.
    R. S. Westfall, Force in Newton's Physics: The Science of Dynamics in the Seventeenth Century, American Elsevier, New York, 1971.Google Scholar

Copyright information

© Springer-Verlag 1992

Authors and Affiliations

  • Bruce Pourciau
    • 1
  1. 1.Department of MathematicsLawrence UniversityAppleton

Personalised recommendations