Archive for History of Exact Sciences

, Volume 49, Issue 1, pp 1–72 | Cite as

Interactions between mechanics and differential geometry in the 19th century

  • Jesper Lützen


79. This study of the interaction between mechanics and differential geometry does not pretend to be exhaustive. In particular, there is probably more to be said about the mathematical side of the history from Darboux to Ricci and Levi Civita and beyond. Statistical mechanics may also be of interest and there is definitely more to be said about Hertz (I plan to continue in this direction) and about Poincaré's geometric and topological reasonings for example about the three body problem [Poincaré 1890] (cf. also [Poincaré 1993], [Andersson 1994] and [Barrow-Green 1994]). Moreover, it would be interesting to find out how the 19th century ideas discussed here influenced the developments in the 20th century. Einstein himself is a hotly debated case.

Yet, despite these shortcommings, I hope that this paper has shown that the interactions between mechanics and differential geometry is not a 20th century invention. Klein's view (see my Introduction) that Riemannian geometry grew out of mechanics, more specifically the principle of least action, cannot be maintained. On the other hand, when Riemannian geometry became known around 1870 it was immediately used in mechanics by Lipschitz. He began a continued tradition in this field, which had several elements in common with the new view of mechanics conceived by the physicists and explicitly carried out by Hertz.

Before 1870 we found only scattered interactions between differential geometry and mechanics and only direct ones for systems of two or three degrees of freedom. For more degrees of freedom the geometrical ideas were in some interesting cases taken over by analogy, but these analogies did not lead to formal introduction of geometries of more than three dimensions.


19th Century Statistical Mechanic Differential Geometry Interesting Case Century Idea 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Andersen, K. [1983] The mathematical technique in Fermat's deduction of the law of Refraction, Historia Mathematica 10 (1983), 48–62.Google Scholar
  2. Andersson, K. G. [1994] Poincaré's discovery of homoclinic points, Arch. Hist. Exact Sci. 48 (1994), 133–147.Google Scholar
  3. Appell, P. [1889] De l'homographie en mécanique, Comptes Rendus Acad. Sci. Paris 108 (1889), 224–226.Google Scholar
  4. Appell, P. [1890] De l'homographie en mécanique, American Journal of Mathematics 12 (1890), 103–114.Google Scholar
  5. Appell, P. [1891] Sur les lois de forces centrales faisant décrire à leur point d'application une conique quelles que soient les conditions initiales, American Journal of Mathematics 13 (1891), 153–158.Google Scholar
  6. Appell, P. [1892a] Sur une transformation de mouvement et les invariants d'un système en mécanique, Bull. Soc. Math. France 20 (1892), 21–22.Google Scholar
  7. Appell, P. [1892b] Sur des transformations de mouvements, Journ. Reine Angew. Math. 110 (1892), 37–41.Google Scholar
  8. Arnold, V. I. [1978] Mathematical methods of classical mechanics, Springer-Verlag, New York 1978; Original Russian ed. 1974.Google Scholar
  9. Atzema, E. J. [1993] The structure of systems of lines in 19th century geometrical optics: Malus' theorem and the description of the infinitely thin pencil, Ph.D. thesis, Utrecht 1993.Google Scholar
  10. Ball, W. W. R.[1892] Mathematical recreations and problems, London 1892.Google Scholar
  11. Barrow-Green, J. [1994] Oscar II's prize competition and the error in Poincaré's memoir on the three body problem, Arch. Hist. Exact Sci. 48 (1994), 107–131.Google Scholar
  12. Beltrami, E. [1866] Risoluzione del problema: Riportare i punti di una superficie un piano in modo che le linei geodetiche vengano rappresentate da linee rette, Annali di Matematica Pura ed Applicata 7 (1866), 185–204.Google Scholar
  13. Beltrami, E. [1868a] Saggio di interpretazione della geometria non-euclidea, Giorn. Mat. 6 (1868), 284–312; Werke 1, 374–405; French transl. in Ann. Sci. Ec. Norm. Sup. 6 (1869), 251–288.Google Scholar
  14. Beltrami, E. [1868b] Sulla teorica generale del parametri differentiali Memoire dell' Academia delle Scienze dell' Instituto di Bologna ser. 2 8 (1868), 551–590; Opere Matematiche 2, 74–118.Google Scholar
  15. Bertrand, J. [1848] Note sur la similitude en mécanique, Journ. Ec. Polyt. 32 (1848), 189–197.Google Scholar
  16. Bertrand, J. [1853] Note sur les integrales communes à plusieurs problèmes de mécanique et sur la théorie des courbes à double courbure, Compt. Rend. Acad. Sci. Paris 43 (1853), 829–832.Google Scholar
  17. Bertrand, J. [1877] Sur la possibilité de déduire d'une seule des lois de Kepler le principe de l'atraction, Comp. Rend Acad. Sci. Paris 84 (1877), 671–674.Google Scholar
  18. Bour, E. [1862] Théorie de la déformation des surfaces, Journ. Ec. Polyt. 22 (39. cahier) (1862), 146–186.Google Scholar
  19. Cauchy, A. L. [1817] Rapport sur un Mémoire de M. Charles Dupin, Annales de Chimie et de Physique 5 (1817), 85–88.Google Scholar
  20. Cauchy, A. L. [1847] Mémoire sur les lieux analytiques, Comp. Rend. Acad. Sci. Paris 24 (1847), p. 885; Oeuvres (1) 10, 292–295.Google Scholar
  21. Cayley, A. [1843] Chapters in the analytical geometry of (n) dimensions, Cambr. Math. Journ. 4 (1843), 119–127; Coll. Math. Papers 1, 55–62.Google Scholar
  22. Cayley, A. [1857] Report on the recent progress of theoretical dynamics, Report of the British Association for the Advancement of Science (1857), 1–42; Coll. Math. Papers 3, 156–204.Google Scholar
  23. Cayley, A. [1862] Report on the progress of the solution of certain special problems of dynamics, Report of the British Association for the Advancement of Science (1862), 184–252; Coll. Math. Papers 4, 513–593.Google Scholar
  24. Cayley, A. [1869] A memoir on abstract geometry, Phil. Trans. Roy. Soc. London 160 (1870), 51–63. (Read 1869); Coll. Math. Papers 6, 456–469.Google Scholar
  25. Christoffel, E. B. [1869] Ueber die Transformation der homogenen Differentialausdrucke zweiten Grades, Journ. Reine Angew. Math. 70 (1869), 46–70.Google Scholar
  26. Clifford, W. K. [1870–1876] On the space-theory of matter, Proc. Cambr. Phil. Soc. 2 (1876), 157–158. (Read Feb. 21, 1870); Math. Papers (1882), 21–22.Google Scholar
  27. Clifford, W. K. [1885] The common sense of the exact sciences, London 1885.Google Scholar
  28. Darboux, G. [1869] Sur une nouvelle série de systèmes orthogonaux algébriques, Comp. Rend. Acad. Sci. Paris 69 (1869), 392–394.Google Scholar
  29. Darboux, G. [1877a] Recherche de la loi que doit suivre une force centrale pour que la trajectoire qu'elle détermine soit toujours une conique, Comp. Rend. Acad. Sci. Paris 84 (1877), 760–762.Google Scholar
  30. Darboux, G. [1877b] Recherche de la loi que doit suivre une force centrale pour que la trajectoire qu'elle détermine soit toujours une conique, Comp. Rend. Acad. Sci. Paris 84 (1877), 936–938.Google Scholar
  31. Darboux, G. [1888] Leçons sur la théorie générale des surfaces, 2. partie Paris 1888. (2. ed. 1915).Google Scholar
  32. Darboux, G. [1889] Remarque sur la communication précédente, Comp. Rend. Acad. Sci. Paris 108 (1889), 449–450.Google Scholar
  33. Dautheville, S. [1890] Sur une transformation de mouvement, Ann. de l'Ecole Norm. (3. sér.) 7 (1890), 361–374.Google Scholar
  34. Dini, U. [1869] Soppra un problema che si presenta nella teoria generale rappresentazioni geografiche di una superficie su di un'altra, Annali di Matematica Pura ed Applicata 3 (1869), 269–293.Google Scholar
  35. Dugas, R. [1950] Histoire de la mécanique, Neuchatel 1950.Google Scholar
  36. Farwel, R. & Knee, C.[1990] The missing link: Riemann's “Commentatio”, differential geometry and tensor analysis, Historia Mathematica 17 (1990), 223–255.Google Scholar
  37. Galilei, G. [1638] Discorse e dimonstrationi matematiche, intorno due nuove scienze, Leiden 1638.Google Scholar
  38. Gauss, C. F. [1828] Disquisitiones generales circa superficies curvas, Comment. soc. reg. sci. Göttengensis recentiores 6 (1828) math. Classe 99–146; Werke 4, 217-258. Engl. transl. General investigations of curved surfaces. Raven Press, New York 1965.Google Scholar
  39. Gauss, C. F. [1850–51] Bestimmung des kleinsten Werts der Summe x12+22+...+n2=R2 für m gegebene Ungleichungen u≧0, From A. Ritter's notes from Gauss' lectures on the method of least squares 1850–51. Gauss Werke 10.1, 473–481.Google Scholar
  40. Gauss, C. F., & Schumacher, H. C.[1860–1865] Briefwechsel, vol 1–6. Altona 1860–1865; Reprint Georg Olms Verlag, Hildesheim 1975.Google Scholar
  41. Goursat, E. [1889] Les transformations isogonales en mécanique, Comp. Rend. Acad. Sci. Paris 108 (1889), 446–448.Google Scholar
  42. Grassmann, H. G. [1844] Die lineare Ausdehnungslehre, Leipzig 1844.Google Scholar
  43. Grassmann, H. G. [1862] Die Ausdehnungslehre. Vollständig und in strenger Form bearbeitet, Berlin 1862.Google Scholar
  44. Halphen, G. H. [1877a] Sur les lois de Kepler, Bull. Soc. Philomatique Paris 7. sér. 1 (1877), 89–91.Google Scholar
  45. Halphen, G. H. [1877b] Sur les lois de Kepler. Solution d'un problème proposé par M. Bertrand, Comp. Rend. Acad. Sci. Paris 84 (1877), 939–941.Google Scholar
  46. Helmholz, H. von [1868] Über die thatsächlichen Grundlagen der Geometrie, Verhandlungen des naturhistorisch-medicinischen Vereins zu Heidelberg 4 (1868), 197–202.Google Scholar
  47. Helmholz, H. von [1873] Ueber ein Theorem geometrisch ähnliche Bewegungen flüssiger Körper betreffend, nebst Anwendung auf das Problem Luftballons zu lenken, Montasberichte der Königl. Akademie der Wissenschaften zu Berlin (1873) 501–514; Wiss. Abhandl. 1, 158–171.Google Scholar
  48. Helmholz, H. von [1898] Vorlesungen über die Dynamik discreter Massenpunkte (ed. Kriger-Menzel). (Lectures held 1893–94). Vorlesungen über Theoretische Physik vol. I, 2 Leipzig 1898.Google Scholar
  49. Hamilton, W. R. [1931–40] The Mathematical Papers of Sir William Rowan Hamilton, vol. I Geometrical Optics, Cambridge 1931, vol II Dynamics, Cambridge 1940.Google Scholar
  50. Hamilton, W. R. [1828] Theory of Systems of Rays. Part First, Trans. Royal Irish Acad. 15 (1828), 69–174. Mathematical Papers I, 1–87.Google Scholar
  51. Hamilton, W. R. [1828–1931] Theory of Systems of Rays. Part Second, Mathematical Papers I, 88–106.Google Scholar
  52. Hamilton, W. R. [1830a] Supplement to an Essay on the Theory of Systems of Rays, Trans. Royal Irish Acad. 16 (1830), 1–61. Mathematical Papers I, 107–144.Google Scholar
  53. Hamilton, W. R. [1830b] Second Supplement to an Essay on the Theory of Systems of Rays, Trans. Royal Irish Acad. 16 (1831), 93–125. Mathematical Papers I, 145–163.Google Scholar
  54. Hamilton, W. R. [1832] Third Supplement to an Essay on the Theory of Systems of Rays, Trans. Royal Irish. Acad. 17 (1832), 1–144. Mathematical Papers I, 164–293.Google Scholar
  55. Hamilton, W. R. [1834] On a General Method in Dynamics, Phil. Trans. Roy. Soc. (1834) II, 247–308; Mathematical Papers II, 103–161.Google Scholar
  56. Hamilton, W. R. [1835] Second Essay on a General Method in Dynamics, Phil. Trans. Roy. Soc. (1835) I, 95–144; Mathematical Papers II, 162–211.Google Scholar
  57. Hankins, T. L., [1980] Sir Willian Rowan Hamilton, Baltimore 1980.Google Scholar
  58. Herrmann, D. B. [1982] Karl Friedrich Zöllner, Teubner, Leipzig 1982.Google Scholar
  59. Hertz, H., [1894] Die Prinzipien der Mechanik, in neuem Zusammenhange dargestellt, Leipzig 1894; Ges. Werke 3. Google Scholar
  60. Hilbert, D., [1899] Grundlagen der Geometrie, Leipzig 1899. Many later editions.Google Scholar
  61. Hörmander, L., [1980] The cosine theorem on a surface and the notion of curvature, Reports from the Department of Math. Univ. of Stockholm, Sweden 1980 no 3.Google Scholar
  62. Jacobi, C. G. J. [1837a] Zur Theorie der Variations-Rechnung und der Differential-Gleichungen, Journ. Reine Angew. Math. 17 (1837), 68–82. Werke IV, 37–55; Transl. Sur le Calcul des Variations et sur la Théorie des Équations différentielles, Journ. Math. Pures et Appl. 3 (1838), 44–59.Google Scholar
  63. Jacobi, C. G. J. [1837b] Über die Reduction der Integration der partiellen Differentialgleichungen erster Ordnung zwischen irgend einer Zahl variabeln auf die Integration eines einzigen Systems gewöhnlicher Differentialgleichungen, Journ. Reine Angew. Math. 17 (1837), 97–162. Werke IV, 57–127; Transl. Sur la Réduction de l'intégration des Équations différentielles partielles du premier ordre entre un numbre quelconque de variables à l'intégration d'un seul système d'équations differentielles ordinaire, Journ. Math. Pures et Appl. 3 (1838), 60–96; and 161–201.Google Scholar
  64. Jacobi, C. G. J. [1837c] Note sur l'intégration des équations différentielles de la dynamique, Comp. Rend. Acad. Sci. Paris 5 (1837), 61–67. Werke IV, 129–136.Google Scholar
  65. Jacobi, C. G. J. [1838–1839] Lettre de M. Jacobi à M. Arago, concernant les lignes géodesiques tracées sur un ellipsoïde à trois axes, Comp. Rend. Acad. Sci. Paris 8 (1839), p. 284 the same as a letter in German to Bessel, Werke VII, p. 385.Google Scholar
  66. Jacobi, C. G. J. [1839] Note von der geodätischen Linie auf einem Ellipsoid und den verschiedenen Anwendungen einer merkwürdigen analytischen Substitution, Journ. Reine Angew. Math. 19 (1838), 309–313. Werke II, 59–63. Transl. De la ligne géodésique sur un ellipsoïde, et des différente usages d'une transformation analytique remarquable, Journ. Math. Pures et Appl. 6 (1841), 267–272.Google Scholar
  67. Jacobi, C. G. J. [1842–1866] Vorlesungen über Dynamik gehalten an der Universität zu Königsberg im Wintersemester 1842–1843 und nach einem von C. W. Borchardt ausgearbeiteten Hefte, Werke Supplementband.Google Scholar
  68. Joachimsthal, F. [1843] Observationes de lineis brevissimus et curvis curvaturae in superficiebus secundus gradus, Journ. Reine Angew. Math. 26 (1843), 155–171.Google Scholar
  69. Klein, F., [1927] Vorlesungen über die Entwicklung der Mathematik im 19. Jahrhundert, Berlin 1927.Google Scholar
  70. Klein, M. J., [1972] Mechanical explanation at the end of the nineteenth century, Centaurus 17 (1972), 58–82.Google Scholar
  71. Klein, M. J., [1974] Boltzmann, monocycles and mechanical explanation, Philosophical Foundations of Science 155–175, ed. Seeger, R. J., & Cohen, R. S., Reidel, Dordrecht 1974.Google Scholar
  72. Kneser, A., [1900] Übersicht der wissenschaftlichen Arbeiten Ferdinand Minding's nebst biographischen Notizen, Zeitschr. Math. Phys. 45 (1900), Hist. litt. Abt. 113–128.Google Scholar
  73. Lagrange, J. L., [1788, 1811–1815] Méchanique Analytique (Analitique in the first edition), Paris 1788, 2. ed. Paris 1811–1815. 3. ed. edited and annotated by Bertrand, Paris 1853, 4. ed. edited by Darboux 1888.Google Scholar
  74. Leihkauf, H., [1983] K. F. Zöllner und der physikalische Raum, NTM-Schriftenr. Gesch. Naturwiss. Technik. Medizin. 20 (1983), 29–33.Google Scholar
  75. Liouville, J. Ms 3640 (1846–1851) Notes conserved at the Bibliothèque de l'Institut de France.Google Scholar
  76. Liouville, J., [1844] De la ligne géodésique sur un ellipsoïde quelconque, Journ. Math. Pures Appl. 9 (1844), 401–408.Google Scholar
  77. Liouville, J. [1846] Sur quelques cas particuliers où les équations du mouvement d'un point matériel peuvent s'intégrer, premier mémoire, Journ. Math. Pures et Appl. 11 (1846), 345–378.Google Scholar
  78. Liouville, J., [1847a] Sur quelques cas particuliers où les équations du mouvement d'un point matériel peuvent s'intégrer; second mémoire, Journ. Math. Pures et Appl. 12 (1847), 410–444.Google Scholar
  79. Liouville, J. [1847b] L'intégration des équations différentielles du mouvement d'un nombre quelconque de points matériel, Connaissance des Temps pour 1850 (1847) 1–40; Journ. Math. Pures et Appl. 14 (1849), 257–299.Google Scholar
  80. Liouville, J., [1852] Note sur la théorie des formules différentielles, Journ. Math. Pures et Appl. 17 (1852), 478–480.Google Scholar
  81. Liouville, J., [1856] Expression remarquable de la quantité qui, dans le mouvement d'un système de points matériels à liaisons quelconques, est un minimum en vertu du principe de la moindre action, Comp. Rend. Acad. Sci. Paris 42 (1856), 1146–1154.Google Scholar
  82. Liouville, R., [1891] Sur un problème d'analyse qui se rattache aux équations de la dynamique, Comp. Rend. Acad. Sci. Paris 112 (1891), 710–712.Google Scholar
  83. Liouville, R., [1892] Sur un problème d'analyse qui se rattache aux équations de la dynamique, Comp. Rend. Acad. Sci. Paris 114 (1892), 974–977. 115 (1892), 403–406.Google Scholar
  84. Lipschitz, R., [1869] Untersuchung in Betreff der ganzen homogenen Funktionen von n Differentialen, Journ. Reine Angew. Math. 70 (1869), 71–102.Google Scholar
  85. Lipschitz, R., [1870] Entwickelung einiger Eigenschaften der quadratischen Formen von n Differentialen, Journ. Reine Angew. Math. 71, 274–287, 288–295.Google Scholar
  86. Lipschitz, R. [1872] Untersuchung eines Problems der Variationsrechnung in welchem das Problem der Mechanik enthalten ist, Journ. Reine Angew. Math. 74, 116–149.Google Scholar
  87. Lipschitz, R. [1873] Extrait de six mémoires publiés dans le Journal de Mathématiques de Borchardt, Bull. Sci. Math. et Astron. 4 (1873), 97–110. 142–157, 212–224, 297–320.Google Scholar
  88. Lützen, J. [1990] Joseph Liouville 1809–1882. Master of pure and applied mathematics, Springer-Verlag, New York 1990.Google Scholar
  89. Mach, E.[1883] Die Mechanik in ihrer Entwickelung historisch-kritisch dargestellt, Leipzig 1883.Google Scholar
  90. Meinel, C. [1991] Karl Friedrich Zöllner und die Wissenschaftskultur der Gründerzeit, Sigma, Berlin 1991.Google Scholar
  91. Minding, F. [1840] Beiträge zur Theorie der kürzesten Linien auf krummen Flächen, Journ. Reine Angew. Math. 20 (1840), 323–327.Google Scholar
  92. Minding, F. [1864] De formae in quam geometra britanicus Hamilton integralia mechanices analyticae redegit, origine genuina. Imperiali speculae astronomicae Pulcoviensi ..., Dorpat 1864; Math. Ann. 55 (1902), 119–135.Google Scholar
  93. Newcomb, S. [1878] Popular Astronomy, New York 1878.Google Scholar
  94. Newton, I. [1687] Philosophiae naturalis principia mathematica, London 1687. English, Ed. F. Cajori, 3rd ed. California 1946.Google Scholar
  95. Painlevé, P. [1892a] Sur les transformations en mécanique, Comp. Rend. Acad. Sci. Paris 114 (1892), 901–904, 1104–1107, 1412–1414.Google Scholar
  96. Painlevé, P. [1892b] Sur les intégrales de la dynamique, Comp. Rend. Acad. Sci. Paris 114 (1892), 1168–1171.Google Scholar
  97. Plücker, J.[1846] System der Geometrie des Raumes in neuer analytischer Behandlungsweise..., Düsseldorf (1846).Google Scholar
  98. Poincaré, H. [1890] Sur le problème des trois corps et les équations de la dynamique, Acta Mathematica 13 (1890), 1–270. Oeuvres 7, 262–479.Google Scholar
  99. Poincaré, H. [1993] New methods of celestial mechanics, Edited by D. L. Goroff with an introduction of 93 pages. American Institute of Physics 1993.Google Scholar
  100. Poinsot, L. [1834–1851] Théorie nouvelle de la rotation des corps, Journ. Math. Pures Appl. 16 (1851), 9–130, 289–336. Published separately as a book Paris 1851. An extract presented to the Acad. de Sci. Paris, published Paris 1834.Google Scholar
  101. Poisson, S. D. [1811] Traité de mécanique, vol 1 Paris 1811.Google Scholar
  102. Pulte, H. [1994] C. G. J. Jacobis Vermächtnis einer “konventionalen” analytischen Mechanik: Vorgeschichte, Nachschriften und Inhalt seiner letzten Mechanik-Vorlesung, Annals of Science 51 (1994), 497–516.Google Scholar
  103. Quetelet, A. [1825] Paper without title on caustics, Correspondance Math. et Phys. 1 (1825), 14–15.Google Scholar
  104. Reich, K. [1973] Die Geschichte der Differentialgeometrie von Gauss bis Riemann (1828–1868), Arch. Hist. Ex. Sci. 11 (1973), 273–382.Google Scholar
  105. Richards, J. L. [1980] Mathematical visions. The Pursuit of Geometry in Victorian England, Academic Press, Boston 1988.Google Scholar
  106. Riemann, B. [1854–1868] Ueber die Hypothesen welche der Geometrie zu Grunde liegen, (Habilitationsvortrag 1854). Abh. Königl. Gess. Wiss. Göttingen Math. Cl. 13 (1867), 1–20. Werke 271–287.Google Scholar
  107. Riemann, B. [1861]Commentatio mathematica qua respondere tentatur quaestioni ab ill ma Academia Parisiensi propositae, Ges. Math. Werke 1876; 2. ed. 1892 pp. 391–404.Google Scholar
  108. Ritter, A. [1853] Über das Prinzip des kleinsten Zwanges, Dissertation Göttingen. Extract in Gauss' Werke 10.1, 469–472.Google Scholar
  109. Schellbach, C. H. [1857] Ueber die Bewegung eines Punktes auf der Oberfläche eines Ellipsoids, Journ. Reine Angew. Math. 54 (1857), 380–387.Google Scholar
  110. Schering, E. [1870] Die Schwerkraft im Gaussischen Raume, Nachrichten Königl. Gess. Wiss. Göttingen (1870), 311–321.Google Scholar
  111. Schäfli, L. [1847] Sur les coefficients dans le développement du produit 1·(1+x) (1+2x)...[1+(n−1)x]suivant les puissances ascendantes de x, Comp. Rend. Acad. Sci. Paris 25 (1847), 391–392. Ges. Abh. 1, 36–37.Google Scholar
  112. Schäfli, L. [1852] Ueber das Minimum des Integrals \(\int {\sqrt {\left( {dx_1^2 + dx_2^2 + \cdot \cdot \cdot + dx_n^2 } \right)} } \) wenn die Variablen x1,x2,...,xndurch eine Gleichung zweiten Grades gegenseitig von einander abhängig sind, Journ. Reine Angew. Math. 43 (1852), 23–36. Ges. Abh. 2, 142–155Google Scholar
  113. Schäfli, L. [1855] Réduction d'une intégrale multiple qui comprend l'arc de cicrle et l'aire du triangle sphérique comme cas particuliers, Journ. Math. Pures. Appl. 20 (1855), 359–394. Ges. Abh. 2, 164–190.Google Scholar
  114. Schäfli, L. [1858–1860] On the multiple whose limits are p1=a1x+b1y+...+h1z>0,...,p2>0,...,pn>0 and x2+y2+...+z2<1, Quart. Journ. Math. 2 (1858), 269–301, 3 (1869), 54–68, 97–108; Ges. Abh. 2, 219–270.Google Scholar
  115. Schäfli, L. [1852–1901] Theorie der vielfachen Kontinuität, Zürich 1901; Ges. Abh. 1, 167–387.Google Scholar
  116. Scholz, E. [1980] Geschichte des Mannigfaltigkeitsbegriffs von Riemann bis Poincaré, Birkhäuser Basel, (1980).Google Scholar
  117. Scholz, E. [1992] Gauss und die Begründung der höheren Geodäsie, pp. 631–647 in “Amphora. Festschrift für Hans Wussing” Ed. Demidov and Others, Birkhäuserd, Basel 1992.Google Scholar
  118. Segre, C. [1912] Mehrdimensionale Räume, pp. 769–972 in Encyclopädie der mathematischen Wissenschaften III 2, Teil 2. Häfte A.Google Scholar
  119. Serret, J. A. [1848a] Sur l'intégration des équations différentiells du mouvement d'un point matériel, Comp. Rend. Acard. Sci. Paris 26 (1848), 605–610.Google Scholar
  120. Serret, J. A. [1848b] Sur l'intégration des équations générales de la Dynamique, Comp. Rend. Acad. Sci. Paris 26 (1848), 639–643.Google Scholar
  121. Serret, P. [1858] Théorie mécanique des lignes a double courbure, 2. Thèse présenté à la Faculté des Sciences de Paris. Mallet-Bachelier, Paris 1859.Google Scholar
  122. Serret, P. [1860] Théorie nouvelle géométrique et mécanique des lignes à double courbure, Mallet-Bachelier, Paris 1860.Google Scholar
  123. Stäckel, P. [1891] Ueber die Differentialgleichungen der Dynamik und den Begriff der analytischen aequivalenz dynamischer Probleme, Journ. Reine Angew. Math. 107 (1891), 319–348.Google Scholar
  124. Tait, P. G. [1878] Zöllner's Scientific Papers (review of vol 1 of Zöllner [1878–81]), Nature (1878), 420–422.Google Scholar
  125. Tazzioli, R. [1993] Ether and Theory of Elasticity in Beltrami's Work, Arch. Hist. Exact Sci. 46 (1993), 1–37.Google Scholar
  126. Tazzioli, R. [1994] Rudolf Lipschitz's Work on Differential Geometry and Mechanics, The History of Modern Mathematics 3. Images, ideas and communities. Ed. E. Knobloch & D. Rowe, Academic Press, Boston 1994.Google Scholar
  127. Thiele, R. [1993] Gauss' Arbeiten über kürzesten Linien aus der Sicht der Variationsrechung, to appear in the Proceedings of the Gauss Symposium, München 1993.Google Scholar
  128. Thomson, W., & Tait, G. T. [1879] Treatise on Natural Philosophy, vol 1 part 1, Cambridge 1879.Google Scholar
  129. Tortolini, B. [1850] Sulla determinazione della linea geodesica descritta sulla superficie di un'ellissoide a tre assi inequali secondo il metodo del Cav. Jacobi ..., Atti dell' Academia Pontificia de'nuovi Lincei 4 (1850), 287–324.Google Scholar
  130. Volkert, K. [1993] On Helmholtz' Paper “Ueber die thatsächlichen Grundlagen der Geometrie”, Historia Mathematica 20 (1993), 307–309.Google Scholar
  131. Wieleitner, H. [1925] Zur Frühgeschichte der Räume von mehr als drei Dimensionen, Isis 7 (1925), 486–489.Google Scholar
  132. Ziegler, R. [1985] Die Geschichte der geometrischen Mechanik im 19. Jahrhundert, Vol 13 in the series Boethius. Franz Steiner Verlag, Wiesbaden 1985.Google Scholar
  133. Zöllner, J. C. F. [1872] Über die Natur der Cometen. Beiträge zur Geschichte und Theorie der Erkenntnis, Leipzig 1872.Google Scholar
  134. Zöllner, J. C. F. [1878–81] Wissenschaftliche Abhandlungen, 1+2 (1878), 3 (1879), 4 (1881) Leipzig.Google Scholar
  135. Zöllner, J. C. F. [1880] Transcendental Physics, London 1880.Google Scholar

Copyright information

© Springer-Verlag 1995

Authors and Affiliations

  • Jesper Lützen
    • 1
  1. 1.Matematisk InstitutKøbenhavns UniversitetUSA

Personalised recommendations