Advertisement

Contributions to Mineralogy and Petrology

, Volume 92, Issue 4, pp 502–517 | Cite as

The phoshate mineral associations of the Tsaobismund pegmatite, Namibia

  • André -Mathieu Fransolet
  • Paul Keller
  • François Fontan
Article

Abstract

A detailed mineralogical investigation using the classical methods of identification by X-ray diffraction and by optical properties in thin sections, has revealed thirty one phosphate minerals occurring in the Tsaobismund pegmatite. This investigation is complemented by wet chemical and, mainly, electron microprobe analyses performed on the phosphates known to be typomorphic or considered to be relevant to the hydrothermal alteration. Additionally, microprobe analyses are also given for garnet, gahnite, and ferrocolumbite associated with the phosphates. On the basis of their chemical composition, particularly in terms of their Fe, Mn, and Mg contents, three types of triphylites are distinguished. Triphylite 1 only occurs as a primary phase, triphylite 2 shows exsolution lamellae of sarcopside, and triphylite 3 is partly replaced by a fluorophosphate of the triplite-zwieselite series. These minerals constitute three generations of the parent phases, which were progressively transformed by metasomatic processes, hydrothermal alteration, and by weathering, to give finally three types of complex associations. The Li(Fe,Mn)PO4 minerals appear to be more sensitive to such transformations than those of the (Fe,Mn)2PO4F series. Four main stages of hydrothermal alteration processes have been recognized in the Tsaobismund pegmatite: (i) the Mason-Quensel sequence results from a progressive oxidation of Fe and Mn, and a concomitant Li-leaching of triphylite yielding ferrisicklerite and heterosite, successively; (ii) the metasomatic exchange of Na for Li produces alluaudite; in the present case, the formation of hagendorfite from triphylite 2 is considered to be earlier than the generation of alluaudite-Na□ occurring in the three associations; (iii) the hydration phase mainly transforms the parent Li(Fe,Mn)PO4 phase into grey hureaulite, associated with barbosalite and tavorite; (iv) the formation of fluorapatite, not particularly widespread, replaces alluaudite-Na□, as well as zwieselite s.l. The following crystallization sequence of the initially formed phosphate minerals is proposed: triphylite 1 → triphylite 2 + sarcopside (associated with garnet) → triphylite 3 + zwieselite s.l. The most prominent feature of this succession is the increase in the Mg and Zn contents in the composition of the phosphates, as well as the decrease in their Li contents. The variations of the Fe/Mn ratios in this sequence are discussed. The succession triphylite-zwieselite within weakly differentiated and Li-poor pegmatites is of general significance.

Keywords

Electron Microprobe Microprobe Analysis Electron Microprobe Analysis Primary Phase Hydrothermal Alteration 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Baldwin JR, Von Knorring O (1983) Compositional range of Mngarnet in zoned granitic pegmatites. Can Mineral 21:683–688Google Scholar
  2. Bergholz J, Kubanek F (1981) Zur Spurenverteilung in pegmatitischen Na-Feldspäten als Prospektionshilfe am Beispiel Tsaobismund/SWA. Min Depos 16:31–43Google Scholar
  3. Boury Ph (1981) Comportement du fer et du manganèse dans des associations de phosphates pegmatitiques. Mémoire de licence (inédit) Inst Minéral Univ Liège 118 pGoogle Scholar
  4. Cameron EN (1955) Concepts of the internal structure of granitic pegmatites and their applications to certain pegmatites of South West Africa. Trans Geol Soc South Africa 58:46–70Google Scholar
  5. Cameron EN, Jahns RH, McNair AH, Page Lr (1949) Internal structure of granitic pegmatites. Econ Geol Monogr vol 2, 115 pGoogle Scholar
  6. Čerńy P (1982) The Tanco pegmatite at Bernic Lake, southeastern Manitoba. Mineral Assoc Canada Short Courses Handbook 8:527–543Google Scholar
  7. Čerńy P, Hawthorne FC (1982) Selected peraluminous minerals. Mineral Assoc Canada Short Courses Handb 8:163–186Google Scholar
  8. Chapman CA (1943) Large magnesia-rich triphylite crystals in pegmatites. Am Mineral 28:90–98Google Scholar
  9. Clark AM, Couper AG (1979) End-member triploidite from Cornwall. Mineral Mag 43:179–180Google Scholar
  10. Fisher DJ (1957) Alluaudites and varulites. Am Mineral 42:661–664Google Scholar
  11. Fontan F (1978) Etude minéralogique et essais expérimentaux sur des phosphates de fer et de manganèse de pegmatites des Jebilet (Maroc) et des Pyrénées (France). Thèse de Doctorat d'Etat Univ Paul-Sabatier Toulouse 250 pGoogle Scholar
  12. Fontan F (1981) La magniotriplite ferrifère du massif des Albères (Pyrénées-Orientales, France). Une nouvelle variété. Bull Minéral 10:672–676Google Scholar
  13. Fontan F, Huvelin P, Orliac M, Permingeat F (1976) La ferrisicklerite des pegmatites de Sidi-bou-Othmane (Jelibet, Maroc) et le groupe des minéraux à structure de triphylite. Bull Soc Fr Minéral Cristallogr 99:274–286Google Scholar
  14. Fransolet A-M (1976) L'huréaulite: ses propriétés minéralogiques et son rôle dans l'évolution des phases Li(Fe,Mn)PO4. Bull Soc Fr Minéral Cristallogr 99:261–273Google Scholar
  15. Fransolet A-M (1977a) Intercroissances et inclusions dans les associations graftonite-sarcopside-triphylite. Bull Soc Fr Minéral Cristallogr 100:198–207Google Scholar
  16. Fransolet A-M (1977b) Le problème génétique des alluaudites. Bull Soc Fr Minéral Cristallogr 100:348–352Google Scholar
  17. Fransolet A-M, Keller P, Fontan F (1983) Preliminary results of the investigation of the phosphate minerals from the Tsaobismund pegmatite, Namibia. Fortschr Mineral 61 (Beih 1):65–66Google Scholar
  18. Fransolet A-M, Abraham K, Speetjens J-M (1985) Evolution génétique et signification des associations de phosphates de la pegmatite d'Angarf-Sud, Plaine de Tazenakht, Anti-Atlas, Maroc. Bull Minéral 108:551–574Google Scholar
  19. Frommurze HF, Gevers TW, Rossouw PJ (1942) The geology and mineral deposits of the Karibib area, South West Africa. Expl Sheet 79 (Karibib, S.W.A.), Geol Surv South Africa, 172 pGoogle Scholar
  20. Frondel C (1949) Wolfeite, xanthoxenite, and whitlockite from the Palermo mine, New Hamsphire. Am Mineral 34:692–705Google Scholar
  21. Gevers TW (1963) Geology along the north-western margin of the Khomas Highlands between Otjibingwe-Karibib and Okahandja, South West Africa. Trans Geol Soc South Africa 66:199–251Google Scholar
  22. Gevers TW, Frommurze HF (1929) The tin-bearing pegmatites of the Erongo Area, South West Africa. Trans Geol Soc South Africa 32:111–149Google Scholar
  23. Ginsburg AI (1960) Specific geochemical features of the pegmatitic process. 21st Intern Geol Congress Session Norden Rept Part 17:111–121Google Scholar
  24. Haapala I (1966) On the granitic pegmatites in the Peräseinäjoki-Alavus area, South Pohjanmaa, Finland. Bull Comm Géol Finlande 224, 98 pGoogle Scholar
  25. Haughton SH, Frommurze HF, Gevers TW, Schwellnus CM, Rossouw PJ (1939) The geology and mineral deposits of the Omaruru area, South West Africa. Expl Sheet 71 (Omaruru, S.W.A.), Geol Surv South Africa, 151 pGoogle Scholar
  26. Heinrich EWm (1951) Mineralogy of triplite. Am Mineral 36:256–271Google Scholar
  27. Huvelin P, Orliac M, Permingeat F (1972) Ferri-alluaudite calcifère de Sidi-bou-Othmane (Jebilet, Maroc). Notes Serv Géol Maroc 32: n∘241, 35–419Google Scholar
  28. Karnin WD (1980) Petrographic and geochemical investigations on the Tsaobismund pegmatite dyke, South West Africa, Namibia. N Jahrb Mineral Monatsh 1980:193–205Google Scholar
  29. Keller P (1974) Phosphatmineralien aus Pegmatiten Südwestafrikas. Aufschluss 25:577–591Google Scholar
  30. Keller P (1980) Giniit, Fe2+ Fe43+[(H2O)2¦(OH)2¦(PO4)4], ein neues Mineral aus dem Pegmatit von Sandamab bei Usakos, Namibia. N Jahrb Mineral Monatsh 1980:49–56Google Scholar
  31. Keller P (1985) Neue Mineralfunde aus dem Pegmatit von Sandamab, S.W.A./Namibia. Aufschluss 36:117–119Google Scholar
  32. Mason B (1941a) Minerals of the Varuträsk pegmatite. XXIII. Some ironmanganese phosphate minerals and their alteration products, with special reference to material from Varuträsk. Geol Fören Förhandl 63:117–165Google Scholar
  33. Mason B (1941b) Minerals of the Varuträsk pegmatite. XXVII. Triplite and vivianite. Geol Foren Förhandl 63:285–288Google Scholar
  34. Moore PB (1971) Crystal chemistry of the alluaudite structure type: Contribution to the paragenesis of pegmatite phosphate giant crystals. Am Mineral 56:1955–1975Google Scholar
  35. Moore PB (1973) Pegmatites phosphates: Descriptive mineralogy and crystal chemistry. Mineral Record 4:103–130Google Scholar
  36. Moore PB, Ito J (1979) Alluaudites, wyllieites, arrojadites: Crystal chemistry and nomenclature. Mineral Mag 43:227–235Google Scholar
  37. Peacor DR (1969) Triphylite-sarcopside-graftonite intergrowths from Custer, South Dakota. Am Mineral 54:969–972Google Scholar
  38. Plimer IR, Blucher ID (1979) Wolfeite and barbosalite from Thackaringa, Australia. Mineral Mag 43:505–507Google Scholar
  39. Reuning E (1923) Pegmatite and Pegmatitmineralien in Südwestafrika. Z Kristallogr 58:448–459Google Scholar
  40. Roering C (1966) Aspects of the genesis and crystallization sequence of the Karibib pegmatites, South West Africa. Econ Geol 61:1064–1089Google Scholar
  41. Shigley JE (1982) Phosphate minerals in granitic pegmatites: A study of primary and secondary phosphates from the Stewart pegmatite, Pala, California. Ph D Thesis, Stanford Univ, 535 pGoogle Scholar
  42. Smith DAM (1965) Geology of the area around the Khan and Swakop Rivers in South West Africa. Mem Geol Surv South Africa SWA Series 3, 113 pGoogle Scholar
  43. Sturmann BD, Mandarino JA, Mrose ME, Dunn PJ (1981) Gormanite, Fe32+Al4(PO4)4(OH)6·2 H2O, the ferrous analogue of souzalite, and new data for souzalite. Canad Mineral 19:381–387Google Scholar
  44. Uebel P-J (1977) Internal structure of pegmatites, its origin and nomenclature derived from petrographic studies of deeply dipping dykes in South West Africa and extended to gently dipping dykes observed in southern Norway. N Jahrb Mineral Abh 131:83–113Google Scholar
  45. Varlamoff N (1958) Zonéographie de quelques champs pegmatitiques de l'Afrique Centrale et les classifications de K.A. Vlassov et de A.I. Guinsbourg. Ann Soc Géol Belgique 52:B55–87Google Scholar
  46. Varlamoff N (1961) Matériaux pour l'étude des pegmatites du Congo et du Ruanda. Quatrième note: Pegmatites à amblygonite et à spodumène et pegmatites fortement albitisées à spodumène et à cassitérite de la région de Katumba (Ruanda). Ann Soc Géol Belgique 54:257–278Google Scholar
  47. Von Knorring O (1976) Mineralogical notes from southern Africa. 20th Ann Rep Res Inst Afr Geol, Univ Leeds: 53–55Google Scholar
  48. Waldrop L (1969) The crystal structure of triplite (Mn,Fe)2FPO4. Z Kristallogr 130:1–14Google Scholar

Copyright information

© Springer-Verlag 1986

Authors and Affiliations

  • André -Mathieu Fransolet
    • 1
  • Paul Keller
    • 2
  • François Fontan
    • 3
  1. 1.Institut de MinéralogieUniversité de LiègeLiègeBelgium
  2. 2.Institut für Mineralogie und KristallchemieUniversität StuttgartStuttgart 80Federal Republic of Germany
  3. 3.Laboratoire de MinéralogieUniversité Paul-Sabatier de ToulouseToulouseFrance

Personalised recommendations