Advertisement

Contributions to Mineralogy and Petrology

, Volume 86, Issue 3, pp 221–229 | Cite as

Crystal chemistry and evolution of the clinopyroxene in a suite of high pressure ultramafic nodules from the Newer Volcanics of Victoria, Australia

  • A. Dal Negro
  • S. Carbonin
  • C. Domeneghetti
  • G. M. Molin
  • A. Cundari
  • E. M. Piccirillo
Article

Abstract

A clinopyroxene suite from lherzolite inclusions associated with the Victorian (Australia) “Newer Volcanics” has been investigated with the aim of understanding the clinopyroxene crystal-chemical response to increasing temperature (e.g. a melting model and/or crystallization processes prevailing at high pressure).

The M1 clinopyroxene polyhedron dominates the intracrystalline physical-chemical variations, essentially given by the triple substitution AlVIFe M1 2 Ti4+⇌Cr3+ Fe3+Mg M1 2+ corresponding to an increase in the volume of M1 with increasing Mg/Mg+Fe2+ (mg) for the clinopyroxene. A relative Ca2+ increase in M2 ensures the necessary charge balance. However, Na+ occupancy of M2 persists to the highest mg values, i.e. maximum thermal stability, where the volume of M2 is the largest due to Fe M2 2+ depletion. The variations of M1 and M2 volumes are greater than, and opposite to, the variations in the volume of T (tetrahedron) by factors of ca. 3 and 1.5, respectively. Inclusions with relatively low clinopyroxene content (Mt. Porndon specimens) show distinct intracrystalline variations, essentially reflecting lower AlVI, i.e. higher volume of M1, and implying a lower pressure regime compared to clinopyroxene-rich analogues (Mt. Leura specimens). The intracrystalline relationships of the Mt. Porndon clinopyroxene suggest that the host peridotite inclusions survived larger degree of mantle melting at shallower depths relative to the Leura analogues.

Keywords

Crystallization Thermal Stability Crystallization Process Shallow Depth Crystal Chemistry 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Burnham CW, Clark JR, Papike JJ, Prewitt CT (1967) A proposed crystallographic nomenclature for clinopyroxene structures. Z. Kristallogr 125:109–119Google Scholar
  2. Clark JR, Papike JJ (1968) Crystal chemical characterization of omphacites. Am Mineral 53:840–868Google Scholar
  3. Dal Negro A, Carbonin S, Molin GM, Cundari A, Piccirillo EM (1982) Intracrystalline cation distribution in natural clinopyroxenes of tholeiitic, transitional, and alkaline basaltic rocks. In: Saxena SK (ed) Advances in Physical Geochemistry Springer Verlag, Berlin, Heidelberg, New York 2:117–150Google Scholar
  4. Deer WA, Howie RA, Zussman J (1978) Rock-forming minerals. Single-chain silicates. Vol 2A. Longman, LondonGoogle Scholar
  5. Ellis DJ (1976) High pressure cognate inclusions in the Newer Volcanics of Victoria. Contrib Mineral Petrol 58:149–180CrossRefGoogle Scholar
  6. Ferguson AK, Sewell DKB (1978) An overlay program for the online operation of a JEOLJXA5A electron microprobe using a modified Mason et al. ZAF correction program. Dept Geol Univ Melbourne Publ N5Google Scholar
  7. Frey FA, Green DH (1974) The mineralogy, geochemistry and origin of lherzolite inclusions in Victorian basanites. Geochim Cosmochim Acta 38:1023–1059CrossRefGoogle Scholar
  8. Frey FA, Prinz M (1978) Ultramafic inclusions from San Carlos, Arizona: petrologic and geochemical data bearing on their petrogenesis. Earth Planet Sci Lett 38:129–176CrossRefGoogle Scholar
  9. Irving AJ (1974) Pyroxene-rich ultramafic xenolith in the Newer basalts of Victoria, Australia, N Jahrb Mineral Abh 120:147–167Google Scholar
  10. Jaques AL, Green DH (1980) Anhydrous melting of peridotite at 0–15 kb pressure and the genesis of tholeiitic basalts. Contrib Mineral Petrol 73:287–310CrossRefGoogle Scholar
  11. Robinson K, Gibbs GV, Ribbe PH (1971) Quadratic elongation; a quantitative measure of distortion in coordination polyhedra. Science 172:567–570Google Scholar
  12. Saxena SK, Ericsson G (1983) Theoretical computation of mineral assemblages in pyrolite and lherzolite. J Petrol 24:538–555Google Scholar
  13. Shannon RD (1976) Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides. Acta Crystallogr A32:751–767Google Scholar
  14. Streckeisen A (1976) To each plutonic rock its proper name. Earth Sci Rev 12:1–33CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 1984

Authors and Affiliations

  • A. Dal Negro
    • 1
  • S. Carbonin
    • 1
  • C. Domeneghetti
    • 2
  • G. M. Molin
    • 1
  • A. Cundari
    • 3
  • E. M. Piccirillo
    • 4
  1. 1.Istituto di Mineralogia e PetrologiaUniversità di PadovaItaly
  2. 2.Centro per la Cristallografia StrutturaleC.N.R., Università di PaviaItaly
  3. 3.Department of GeologyUniversity of MelbourneParkvilleAustralia
  4. 4.Istituto di Mineralogia e PetrografiaUniversità di TriesteItaly

Personalised recommendations