Contributions to Mineralogy and Petrology

, Volume 26, Issue 3, pp 225–246 | Cite as

An erupted migmatite from Cerro del Hoyazo, SE Spain

  • H. P. Zeck


The almandine-bearing biotite-cordierite-labradorite dacite of the Cerro del Hoyazo is part of the Neogene volcanic range in SE Spain, extending roughly from Cabo de Gata to Cartagena.

About 1 vol. % of the lava consists of rock inclusions, measuring over 1 cm, made up of almandine-biotite-sillimanite gneiss, quartz-cordierite gneiss and spinel-cordierite rock. On the ground of their abundance, chemical composition, mineral content and structure, the first and the second type are interpreted as restite inclusions and the third type as recrystallized restite. These restites and the dacitic magma were derived syngenetically from a (semi-) pelitic rock sequence by means of anatexis: the (semi-)pelitic rocks separated into a granitoid melt and Al-rich restites. Euhedral almandine crystals found in the glass base of the dacite have a pre-magmatic origin, and may be compared directly to those in the restites.

Another type of inclusion is represented by basic igneous rocks of varying grain size, comprising mainly basaltoid rocks and quartz-rich gabbros. These inclusions commonly bear some restite fragments of the kind mentioned above, and therefore are interpreted as representing basic magma of deeper origin that has absorbed some anatectic material. In part, the composite basic melt thus formed crystallized under plutonic conditions and fragments of the resulting quartz-rich gabbro were incorporated in a later stage in the dacitic melt. Another portion of the composite basic magma was incorporated in the dacitic melt (probably shortly before the eruption of the dacitic magma) as magma blebs (Ø ≅1–20 cm) which subsequently crystallized in part, some of them showing a comparatively fine-grained border zone.

Two possible hypotheses are suggested for the time relation between the anatexis of the (semi-) pelitic complex and the appearance of the basic magma: (a) the anatexis was of a regional nature, and was in progress when the basic magma entered the stage (and assumedly triggered the eruption of the granitoid magma); (b) the regional anatexis took place considerably earlier and the basic magma intruded an essentially solid migmatite complex, which was then melted down (contact anatexis) and subsequently erupted.


Sillimanite Almandine Glass Base Basic Magma Acid Magma 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Bordet, P.: Courbes pour la détermination des feldspaths plagioclases haute température et basse température, dans la zone perpendicular à g' (010). Bull. Soc. Franç. Minéral. Crist. 86, 206–207 (1963).Google Scholar
  2. Brown, G. M.: Melting relations of Tertiary granitic rocks in Skye and Rhum. Mineral. Mag. 33, 533–562 (1963).Google Scholar
  3. Burri, C., Parga-Pondal, I.: Neue Beiträge zur Kenntnis des granat-führenden Cordieritandesites vom Hoyazo bei Nijar (Provinz Almería, Spanien). Schweiz. Mineral. Petrog. Mitt. 16, 226–262 (1936).Google Scholar
  4. Dietrich, R. V., Mehnert, K. R.: Proposal for the nomenclature of migmatites and associated rocks. Report Int. Geol. Congr., 1960, Part 26, 56–67 (1961).Google Scholar
  5. Glanchaud, L., Letolle, R.: La théorie des deux magmas fondamentaux dans le volcanisme intracontinental et l'évolution géochimique des lavas du Mont-Dore (France). Geol. Rundschau 55, 316–329 (1965).CrossRefGoogle Scholar
  6. Green, T. H., Ringwood, A. E.: Origin of the calc-alkaline igneous rock suite. Earth Plan. Sci. Lett. 1, 307–316 (1966).CrossRefGoogle Scholar
  7. —: Genesis of the calc-alkaline rocks. Contr. Mineral. and Petrol. 18, 105–162 (1968a).CrossRefGoogle Scholar
  8. —: Origin of garnet phenocrysts in calc-alkaline rocks. Contr. Mineral. and Petrol. 18, 163–174 (1968b).CrossRefGoogle Scholar
  9. Gribble, C. D.: The cordierite-bearing rocks of the Haddo House and Arnage Districts, Aberdeenshire. Contr. Mineral. and Petrol. 17, 315–330 (1968).CrossRefGoogle Scholar
  10. —, O'Hara, M. J.: Interaction of basic magma with pelitic materials. Nature 214, 1198–1201 (1967).CrossRefGoogle Scholar
  11. Hawkes, D. D.: Order of abundant crystal nucleation in a natural magma. Geol. Mag. 104, 473–486 (1967).Google Scholar
  12. Holmes, A.: The origin of igneous rocks. Geol. Mag. 69, 543–558 (1932).Google Scholar
  13. Kuno, H.: Differentiation of basalt magmas. In: Basalts (The Poldervaart treatise on rocks of basaltic composition, New York etc.: Interscience), vol. 2, p. 623–688 (1968).Google Scholar
  14. Marinelli, G.: Genèse des magmas du volcanisme plioquaternaire des Apennins. Geol. Rundschau 57, 127–141 (1967).CrossRefGoogle Scholar
  15. Mehnert, K. R.: Der gegenwärtige Stand des Granitproblems. Fortschr. Mineral. 37, 117–206 (1959).Google Scholar
  16. —: Petrographie und Abfolge der Granitisation im Schwarzwald, III. Neues Jahrb. Mineral., Abhandl. 98, 208–249 (1962).Google Scholar
  17. —: Petrographie und Abfolge der Granitisation im Schwarzwald, IV. Neues Jahrb. Mineral., Abhandl. 99, 161–199 (1963).Google Scholar
  18. Osann, A.: 5. Über den Cordierit führenden Andesit vom Hoyazo (Cabo de Gata). Z. Deut. Geol. Ges. 40, 694–708 (1888).Google Scholar
  19. Piwinskii, A. J., Wyllie, P. J.: Experimental studies of igneous rock series: a zoned pluton in the Wallowa Batholith, Oregon, J. Geol. 76, 205–234 (1968).CrossRefGoogle Scholar
  20. Plas, L., van der, Tobi, A. C.: A chart for judging the reliability of point counting results. Am. J. Sci. 263, 87–90 (1965).CrossRefGoogle Scholar
  21. Poldervaart, E.: Chemistry of the earth's crust, in: Crust of the Earth (symposium). Geol. Soc. Am., Spec. Papers 66, 119–144 (1955).Google Scholar
  22. Read, H. H., Farquhar, O. C.: The geology of the Arnage district (Aberdeenshire): a reinterpretation. Quart. J. Geol. Soc. London 107, 423–440 (1952).Google Scholar
  23. Rittmann, A.: Nomenclature of volcanic rocks. Bull. Volcanol. 12, 75–102 (1952).Google Scholar
  24. —: Die Bimodalität des Vulkanismus und die Herkunft der Magmen. Geol. Rundschau 57, 277–295 (1967).CrossRefGoogle Scholar
  25. Ronov, A. B., Khlebnikova, Z. V.: Chemical composition of the main genetic clay types. Geochemistry, 527–552 (1957).Google Scholar
  26. Shaw, D. M.: Geochemistry of pelitic rocks. Part III: Major elements and general geochemistry. Bull. Geol. Soc. Am. 67, 919–934 (1956).Google Scholar
  27. Streckeisen, A. L.: Classification and nomenclature of igneous rocks. Neues Jahrb. Mineral., Abhandl. 107, 104–214 (1967).Google Scholar
  28. Thornton, C. P., Tuttle, O. F.: Chemistry of igneous rocks. I. Differentiation Index. Am. J. Sci. 258, 664–684 (1960).CrossRefGoogle Scholar
  29. Turner, F. J.: Metamorphic petrology. New York etc: McGraw-Hill, 1968.Google Scholar
  30. Tuttle, O. F., Bowen, N. L.: Origin of granite in the light of experimental studies in the system NaAlSi3O8-KAlSi3O8-SiO2-H2O. Geol. Soc. Am. Mem. 74, (1958).Google Scholar
  31. Wager, L. R., Bailey, E. B.: Basic magma chilled against acid magma. Nature 172, 68–70 (1953).CrossRefGoogle Scholar
  32. Walker, G. P. L.: Acid volcanic rocks in Iceland. Bull. Volcanol. 29, 375–402 (1966).Google Scholar
  33. —, Skelhorn, R. R.: Some associations of acid and basic igneous rocks. Earth-Sci. Rev. 2, 93–109 (1966).CrossRefGoogle Scholar
  34. Wilcox, R. E.: Rhyolite-basalt complex on Gardiner River, Yellowstone Park, Wyoming. Bull. Geol. Soc. Am. 55, 1047–1080 (1944).Google Scholar
  35. Winkler, H. G. F.: Die Genese der metamorphen Gesteine, second edition. Berlin-Heidelberg-New York: Springer, 1967.Google Scholar
  36. Wyllie, P. J., Tuttle, O. F.: Hydrothermal melting of shales. Geol. Mag. 98, 56–66 (1961).CrossRefGoogle Scholar
  37. Zeck, H. P.: Anatectic origin and further petrogenesis of almandine-bearing biotite-cordierite-labradorite-dacite with many inclusions of restite and basaltoid material, Sherry del Hoyazo, SE Spain. Thesis, Amsterdam University (1968).Google Scholar
  38. Zoubek, V.: Le métamorphism d'injection et le métamorphism de contact dans les environs de Pelhrimov. Sb. St. Geol. Ust. ČSR (Prague) 7, 366–413 (1927).Google Scholar

Copyright information

© Springer-Verlag 1970

Authors and Affiliations

  • H. P. Zeck
    • 1
  1. 1.Institute of PetrologyUniversity of CopenhagenDenmark

Personalised recommendations