Contributions to Mineralogy and Petrology

, Volume 42, Issue 4, pp 287–304 | Cite as

Sub-sea-floor metamorphism, heat and mass transfer

  • E. T. C. Spooner
  • W. S. Fyfe


The ophiolitic rocks of E. Liguria, Italy contain a „spilitic” metamorphic assemblage sequence, cross-cut by hydrothermal veins, which developed in the oceanic environment. Metamorphic parageneses indicate that temperatures as high as ∼400°C were realised at depths as shallow as 300 m below the original rock/water interface. The inferred temperature interval was equivalent to a geothermal gradient of ∼1300°C/km.

It is suggested that metamorphism took place in a sub-sea-floor geothermal system, and that such systems are an integral part of the sea-floor spreading process. Modern evidence is provided to support this hypothesis, and to suggest that heavy metal rich solutions discharged from such systems are responsible for the formation of a metal enriched sedimentary component. A unified model of sub-sea-floor metamorphism and mass transfer is proposed, and possible differences between sub-sea-floor and terrestial geothermal systems are discussed. In the light of the model, the origins of certain aspects of bedded cherts found associated with ophiolitic rocks, of ophiolitic massive sulphide deposits and of certain trace element patterns are considered.


Mass Transfer Chert Massive Sulphide Geothermal Gradient Sulphide Deposit 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Abbate, E., Bortolotti, V., Passerini, P.: Olistrosomes and olistoliths. In: Development of the Northern Apennines Geosyncline, G. Sestini, ed. Sediment. Geol. 4, 521–557 (1970)Google Scholar
  2. Abbate, E., Bortolotti, V., Passerini, P.: Studies on mafic and ultramafic rocks. 2-Palaeogeographic and tectonic considerations on the ultramafic belts in the Mediterranean area. Boll. Soc. Geol. Ital. 91, 239–282 (1972)Google Scholar
  3. Abbate, E., Sagri, M.: The eugeosynclinal sequences. In: Development of the Northern Apennines Geosyncline, G. Sestini, ed. Sediment. Geol. 4, 251–340 (1970)Google Scholar
  4. Anderson, R.N.: Petrologic significance of low heat flow on the flanks of slow-spreading mid-ocean ridges. Geol. Soc. Am. Bull. 83, 2947–2956 (1972)Google Scholar
  5. Backer, H., Schoell, M.: New deeps with brines and metalliferous sediments in the Red Sea. Nature Physical Science. 240, 153–158 (1972)Google Scholar
  6. Bailey, E.B., McCallien, W.J.: Some aspects of the Steinmann trinity, mainly chemical. Quart. Il. Geol. Soc. Lond. 116, 365–395 (1960)Google Scholar
  7. Bender, M., Broecker, W., Gornitz, V., Middel, U., Kay, R., Sun, S.: Geochemistry of three cores from the East Pacific rise. Earth Planet. Sci. Lett. 12, 425–433 (1971)Google Scholar
  8. Berner, R.A.: Goethite stability and the origin of red beds. Geochim. Cosmochim. Acta. 33, 267–273 (1969)Google Scholar
  9. Bezzi, A., Piccardo, G.B.: Structural features of the Ligurian ophiolites: petrologic evidence for the „oceanic” floor of the Northern Apennines geosyncline; a contribution to the problem of the Alpine type Gabbro-peridotite associations. Mem. Soc. Geol. Ital. 10, 53–63 (1971)Google Scholar
  10. Bigazzi, G., Bonadona, F.P., Ferrara, G., Innocenti, F.: Fission track ages of zircons and apatites from North Apennine ophiolites. Fortschr. Mineral. 50, 51–53 (1972)Google Scholar
  11. Bischoff, J.L.: Red Sea geothermal brine deposits; their mineralogy, chemistry and genesis. In: Hot brines and recent heavy metal deposits in the Red Sea, E.T. Degens, D.A. Ross, eds. p. 368–401. Berlin-Heidelberg-New York: Springer 1969Google Scholar
  12. Björnsson, S., Arnórsson, S., Tómasson, J.: Exploration of the Reykjanes Brine Area. Report to the U. N. Symposium on Geothermal Energy. Pisa. p. 1–25 1970Google Scholar
  13. Bödvarsson, G.: Physical characteristics of natural heat resources in Iceland. Jökull. 11, 29–38 (1961)Google Scholar
  14. Bortolotti, V., Passerini, P.: Magmatic activity. In: Development of the Northern Apennines geosyncline, G. Sestini, ed. Sediment. Geol. 4, 599–624 (1970)Google Scholar
  15. Böstrom, K.: Submarine volcanism as a source of iron. Earth Planet. Sci. Lett. 9, 348–354 (1970)Google Scholar
  16. Böstrom, K., Farquarson, B., Eyl, W.: Submarine hot springs as a source of active ridge sediments. Chem. Geol. 10, 189–203 (1972)Google Scholar
  17. Böstrom, K., Peterson, M.N.A.: Precipitates from hydrothermal exhalations on the East Pacific Rise. Econ. Geol. 61, 1258–1265 (1966)Google Scholar
  18. Böstrom, K., Peterson, M.N.A., Joensuu, O., Fisher, P.E.: Aluminium-poor ferroman-ganoan sediments on active oceanic ridges. J. Geophys. Res. 74, 3261–3270 (1969)Google Scholar
  19. Browne, P.R.L., Ellis, A.J.: The Ohaki-Broadlands hydrothermal area, New Zealand: Mineralogy and related geochemistry. Am. J. Sci. 269, 97–130 (1970)Google Scholar
  20. Cann, J.R.: Spilites from the Carlsberg Ridge, Indian Ocean. J. Petrol. 10, 1–19 (1969)Google Scholar
  21. Cann, J.R.: A new model for the structure of the ocean crust. Nature. 226, 928–930 (1970)Google Scholar
  22. Cann, J.R.: Petrology of basement rocks from Palmer Ridge, N. E. Atlantic. Phil. Trans. Roy. Soc. Lond. Ser A. 268, 605–617 (1971)Google Scholar
  23. Clark, S. P., Jr.: Thermal conductivity. In: Handbook of physical constants, S. P. Clark, Jr. ed. Geol. Soc. Mem. 97, 459–482 (1966)Google Scholar
  24. Coleman, R. G.: Plate tectonic emplacement of Upper Mantle Peridotites along Continental edges. J. Geophys. Res. 76, 1212–1222 (1971)Google Scholar
  25. Constantinou, G., Govett, G.J.S.: Genesis of sulphide deposits, ochre and umber of Cyprus. Trans. Inst. Mining Met. (Sect. B: Appl. earth sci.). 81, B32–46 (1972)Google Scholar
  26. Corliss, J.B.: The origin of metal-bearing submarine hydrothermal solutions. J. Geophys. Res. 76, 8128–8138 (1971)Google Scholar
  27. Craig, H.: The isotopic geochemistry of water and carbon in geothermal areas, conference on nuclear geology in geothermal areas, Spoleto, Italy, p. 17–53 (1963)Google Scholar
  28. Dasch, E., Ross Heath, G., Dymond, J.: Isotopic analysis of metalliferous sediments from the East Pacific Rise. Earth Planet. Sci. Lett. 13, 175–180 (1971)Google Scholar
  29. Degens, E.T., Ross, O.A., eds.: Hot brines and recent heavy metal deposits in the Red Sea. Berlin-Heidelberg-New York: Springer 1969Google Scholar
  30. Deffeyes, K.S.: The axial valley: a steady state feature of the terrain. In: Megatectonics of continents and oceans, p. 194–222. New Brunswick: Rutgers Univ. Press 1970Google Scholar
  31. De Roever, W.P.: Sind die Alpinotypen Peridotit-massen vielleicht tektonisch verfrachtete Bruchstücke der Peridotitschale? Geol. Rundschau. 46, 137–146 (1956)Google Scholar
  32. Dewey, J.F., Bird, J.M.: Origin and emplacement of the ophiolite suite: Appalachian ophiolites in Newfoundland. J. Geophys. Res. 26, 3179–3206 (1971)Google Scholar
  33. Dietz, R.S.: Alpine serpentinites as oceanic rind fragments. Geol. Soc. Am. Bull. 74, 947–952 (1963)Google Scholar
  34. Elder, J.W.: Physical processes in geothermal areas. In: Terrestrial heat flow. Am. Geophys. Union Geophys. Mon. 8, 211–239 (1965)Google Scholar
  35. Ellis, A.J.: The chemistry of some explored hydrothermal systems. In: Geochemistry of hydrothermal ore deposits, H. L. Barnes, ed. p. 465–514. New York: Holt, Rinehart and Winston 1967Google Scholar
  36. Galli, M., Costesogno, L.: Studi petrografici sulle formazioni ofiolitiche dell'Appennino Ligure, Nota XIII- Fenomeni de Metamorfismo de baso grado in alcune rocce della formazione ofiolitica dell'Appennino Ligure. Rend. Soc. Mineral. Ital. 26, 599–647 (1970)Google Scholar
  37. Gass, I.G.: Is the Troodos Massif of Cyprus a fragment of Mesozoic ocean floor? Nature. 220, 39–42 (1968)Google Scholar
  38. Gass, I.G., Masson-Smith, D.: The geology and gravity anomalies of the Troodos Massif, Cyprus. Phil. Trans. Roy. Soc. London, Ser. A 255, 417–467 (1963)Google Scholar
  39. Gass, I.G., Smewing, J.D.: Intrusion, extrusion and metamorphism at constructive margins: evidence from the Troodos Massif, Cyprus. Nature 242, 26–29 (1973)Google Scholar
  40. Gelati, R., Pasquarè, G.: Interpretazione Geologica del limite Alpi-Appennini in Liguria. Riv. Ital. Palaeont. 76, 513–578 (1970)Google Scholar
  41. Glasstone, S., Lewis, D.: Elements of physical chemistry, p. 578. London: Macmillan and Co. Ltd. 1965Google Scholar
  42. Govett, G.J.S., Pantazis, Th.M.: Distribution of Cu, Zn, Ni and Co in the Troodos Pillow lavas series, Cyprus. Trans. Inst. Mining Met. (Sect. B: Appl. earth sci.) 80, B27–46 (1971)Google Scholar
  43. Green, D.H.: The petrogenesis of the high-temperature peridotite intrusion in the Lizard Area, Cornwall. J. Petrol. 5, 134–188 (1964)Google Scholar
  44. Heezen, B.C., Ewing, M.: The mid-oceanic ridge. In: The sea, M. N. Hill, ed. vol. 3, p. 388–410. New York: Interscience 1963Google Scholar
  45. Heezen, B.C., Menard, H.W.J.: Topography of the deep-sea floor. In: The sea, M.N. Hill ed. vol. 3, p. 233–280. New York: Interscience 1963Google Scholar
  46. Helgeson, H.C.: Complexing and hydrothermal ore deposition. New York: Pergamon Press 1964Google Scholar
  47. Helgeson, H.C.: Solution chemistry and metamorphism. In: Researches in geochemistry, P.H. Abelson, ed. vol. II, p. 362–404. New York: John Wiley 1967Google Scholar
  48. Helgeson, H.C.: Evaluation of irreversible reactions in geochemical processes involving minerals and aqueous solutions-I. Thermodynamic relations. Geochim. Cosmochim. Acta 32, 853–877 (1968)Google Scholar
  49. Helgeson, H.C.: Thermodynamics of hydrothermal systems at elevated temperatures and pressures. Am. J. Sci. 267, 729–804 (1969)Google Scholar
  50. Helgeson, H.C., Brown, T.H., Nigrini, A., Jones, T.A.: Calculations of mass transfer in geochemical processes involving aqueous solutions. Geochim. Cosmochim. Acta 34, 569–592 (1970)Google Scholar
  51. Helgeson, H.C, Garrels, R.M., Mackenzie, R.T.: Evaluation of irreversible reactions in geochemical processes involving minerals and aqueous solutions-II. Applications. Geochim. Cosmochim. Acta 32, 455–482 (1969)Google Scholar
  52. Henley, R.W.: Some fluid dynamics and ore genesis. Trans. Inst. Mining Met. (Sect. B: Appl. earth sci.) 82, B1-B8 (1973)Google Scholar
  53. Hess, H.H.: Mid-ocean ridges and tectonics of the sea-floor. In: Submarine geology and geophysics, 17th Colston Research Symposium, Bristol, England, W. F. Whittard, R. Bradshaw, eds., p. 317–333. London: Butterworths 1965Google Scholar
  54. Holland, H.D.: Gangue minerals in hydrothermal systems. In: Geochemistry of hydrothermal ore deposits, H. L. Barnes, ed. p. 382–436. New York: Holt, Rinehart and Winston 1967Google Scholar
  55. Johnson, A.E.: Origin of Cyprus pyrite deposits. 24th. I.G.C., Sect. 4, 291–298 (1972)Google Scholar
  56. Keith, T.E.C., Muffler, L.J.P., Cremer, M.: Hydrothermal epidote formed in the Salton Sea geothermal system, California. Am. Mineralogist 53, 1635–1644 (1968)Google Scholar
  57. Khan, M.A., Summers, C., Bamford, S.A.D., Chroston, P.N., Poster, C.K., Vine, F.J.: Reversed seismic refraction line on the Troodos Massif, Cyprus. Nature Physical Sciences 238, 134–136 (1972)Google Scholar
  58. Krauskopf, K.B.: Factors controlling the concentrations of thirteen rare metals in seawater. Geochim. Cosmochim. Acta 9, 1–32B (1956)Google Scholar
  59. Langmuir, D.: Particle size effect on the reaction goethite=haematite and water. Am. J. Sci. 271, 147–156 (1971)Google Scholar
  60. Langseth, M.G., Herzen, R.P. von: Heat flow through the floor of the world oceans. In: The sea, A.E. Maxwell, ed., vol. 4, pt. 1 p. 299–352. New York: Intersience 1970Google Scholar
  61. Liou, J.G.: Synthesis and stability relations of Prehnite, Ca2Al2Si3O10(OH)2. Am. Mineralogist 56, 507–531 (1971)Google Scholar
  62. Lister, C.R.B.: On the thermal balance of a Mid-ocean ridge. Geophys. J.R. astr. Soc. 26 515–535 (1972)Google Scholar
  63. Lorimer, G.W., Champness, P.E., Spooner, E.T.C.: Dislocation distributions in naturally deformed Omphacite and Albite. Nature Physical Science 239, No. 94, 108–109 (1972)Google Scholar
  64. Mahon, W.A.F.: Silica in hot water discharged from drillholes at Wairakei, New Zealand. New Zealand J. Sci. 9, 135–144 (1966)Google Scholar
  65. Melson, W.G., Thompson, G., Andel, Tj.H. van: Volcanism and metamorphism in the mid-Atlantic Ridge, 22°N latitude. J. Geophys Res. 73, 5925–5941 (1968)Google Scholar
  66. Miyashiro, A., Shido, F., Ewing, M.: Metamorphism in the mid-Atlantic ridge near 24°N and 30°N. Phil. Trans. Roy. Soc. London Ser. A. 268, 589–603 (1971)Google Scholar
  67. Moore, J.G.: Water content of basalt erupted on the ocean floor. Contr. Mineral. and Petrol. 28, 272–279 (1970)Google Scholar
  68. Moores, E.M.: Petrology and structure of the Vourinos ophiolite complex of northern Greece. Geol. Soc. Am. Spec. Pap. 118, (1969)Google Scholar
  69. Moores, E.M., Vine, F.J.: The Troodos Masif, Cyprus and other ophiolites as oceanic crust: evaluation and implications. Phil. Trans. Roy. Soc. London, Ser. A. 268, 443–466 (1971)Google Scholar
  70. Muehlenbachs, K., Clayton, R.N.: Oxygen isotope geochemistry of submarine greenstones. Can. J. Earth Sci. 9, 471–478 (1972)Google Scholar
  71. Nicholls, G.D., Islam, MR.: Geochemical investigations of basalts and associated rocks from the ocean floor and their implications. Phil. Trans. Roy. Soc. London, Ser. A. 268, 469–486 (1971)Google Scholar
  72. Palmason, G.: On heat flow in Iceland in relation to the Mid-Atlantic ridge. In: Iceland and Mid-ocean ridges, S. Bjornsson, ed. Soc. Sci. Islandica 38, 111–127 (1967)Google Scholar
  73. Pamić, J., Šćavničar, S., Medjimorec, S.: Mineral assemblages of amphibolites associated with Alpine-type Ultramafics in the Dinaride Ophiolite Zone (Yugoslavia). J. Petrol. 14, 133–157 (1973)Google Scholar
  74. Pearce, J.A., Cann, J.R.: Ophiolite origin investigated by discriminant analysis using Ti, Zr and Y. Earth Planet. Sci. Lett. 12, 339–349 (1971)Google Scholar
  75. Robertson, A.H.F., Hudson, J.D.: Cyprus umbers; chemical precipitates on a Tethyan ocean ridge. Earth Planet. Sci. Lett. 18, 93–101 (1973)Google Scholar
  76. Ross, D.A.: Red Sea hot brine area: revisited. Science 175, 1455–1457 (1972)Google Scholar
  77. Sheppard, S.M.F., Epstein, S.: D/H and 18O/16O ratios of minerals of possible mantle or lower crustal origin. Earth Planet. Sci. Lett. 9, 232–239 (1970)Google Scholar
  78. Sheppard, S.M.F., Nielsen, R.L., Taylor, H.P., Jr.: Oxygen and hydrogen isotope ratios of clay minerals from porphyry copper deposits. Econ. Geol. 64, 755–777 (1969)Google Scholar
  79. Sheppard, S.M.F., Nielsen, R.L., Taylor, H.P., Jr.: Hydrogen and oxygen isotope ratios in minerals from porphyry copper deposits. Econ. Geol. 66, 515–542 (1971)Google Scholar
  80. Sigvaldason, G.E.: Epidote and related minerals in two deep geothermal drill holes, Reykjavik and Hveragerdi, Iceland. U.S. Geol. Surv. Profess. Papers 450-E, 77–79 (1962)Google Scholar
  81. Sillitoe, R.H.: Formation of certain massive sulphide deposits at sites of sea-floor spreading. Trans. Inst. Mining Met. (Sect. B: Appl. earth Sci.) 81, B141–148 (1972)Google Scholar
  82. Sourirajan, S., Kennedy, G.C.: The system H2O-NaCl at elevated temperatures and pressures. Am. J. Sci. 260, 115–141 (1962)Google Scholar
  83. Talwani, M., Windish, C.C., Langseth, M.G., Jr.: Reykjanes ridge crest: a detailed geophysical study. J. Geophys. Res. 76, 473–517 (1971)Google Scholar
  84. Taylor, H.P., Jr., Forester, R.W.: Low-18O igneous rocks from the intrusive complexes of Skye, Mull and Ardnamurchan, Western Scotland. J. Petrol. 12, 465–497 (1971)Google Scholar
  85. Thayer, T.P.: Peridotite-gabbro complexes as keys to the petrology of mid-ocean ridges. Geol. Soc. Am. Bull. 80, 1515–1522 (1969)Google Scholar
  86. Thurston, D.R.: Ph.D. Thesis, University of Manchester. 1970Google Scholar
  87. Thurston, D.R.: Studies on bedded cherts. Contr. Mineral. and Petrol. 36, 329–334 (1972)Google Scholar
  88. Tómasson, J., Kristmannsdóttir, H.: High temperature alteration minerals and thermal brines, Reykjanes, Iceland. Contr. Mineral. and Petrol. 36, 123–134 (1972)Google Scholar
  89. Towe, K.M., Bradley, W.F.: Mineralogical constitution of colloidal „Hydrous ferric oxides”. J. Colloid and Interface Sci. 24, 384–392 (1967)Google Scholar
  90. Von der Borch, C.C., Rex, R.W.: Amorphous iron oxide precipitates in sediments cored during Leg 5, Deep Sea Drilling Project, In: Initial reports of the Deep Sea Drilling Project, V, p. 541–544 Washington, D.C.: U.S. Govt. Printing Office 1971Google Scholar
  91. Von der Borch, C.C., Nesteroff, W.D., Galehouse, J.S.: Iron-rich sediments cored during Leg 8 of the Deep Sea Drilling Project. In: Initial Reports of the Deep Sea Drilling Project, v VIII. p. 829–833. Washington, D.C.: U.S. Govt. Printing Office 1971Google Scholar
  92. Vuagnat, M.: Remarques sur la trilogie serpentinites-gabbros-diabases dans le bassin de la Mediterranée occidentale. Geol. Rundschau 53, 336–358 (1963)Google Scholar
  93. Walker, G.P.L.: Zeolite zones and dyke distribution in relation to the structure of the basalts of eastern Iceland. J. Geol. 68, 515–528 (1960)Google Scholar
  94. White, D.E., Brannock, W.W., Murata, K.J.: Silica in hot-spring waters. Geochim. Cosmichim. Acta 10, 27–59 (1956)Google Scholar
  95. Zelenov, K.K.: Iron and Manganese in exhalations from the submarine volcano Banu Wuhu (Indonesia). Dokl. Akad. Nauk S.S.S.R. 155 (6), 1317–1320 [in Russian] (1964)Google Scholar

Copyright information

© Springer-Verlag 1973

Authors and Affiliations

  • E. T. C. Spooner
    • 1
    • 3
  • W. S. Fyfe
    • 2
  1. 1.Dept. of GeologyThe UniversityManchesterEngland
  2. 2.Dept. of GeologyThe University of Western OntarioLondon 72Canada
  3. 3.Dept. of Geology and MineralogyOxfordEngland

Personalised recommendations