Contributions to Mineralogy and Petrology

, Volume 98, Issue 4, pp 455–489 | Cite as

Crustal contributions to arc magmatism in the Andes of Central Chile

  • Wes Hildreth
  • Stephen Moorbath


Fifteen andesite-dacite stratovolcanoes on the volcanic front of a single segment of the Andean arc show along-arc changes in isotopic and elemental ratios that demonstrate large crustal contributions to magma genesis. All 15 centers lie 90 km above the Benioff zone and 280±20 km from the trench axis. Rate and geometry of subduction and composition and age of subducted sediments and seafloor are nearly constant along the segment. Nonetheless, from S to N along the volcanic front (at 57.5% SiO2) K2O rises from 1.1 to 2.4 wt %, Ba from 300 to 600 ppm, and Ce from 25 to 50 ppm, whereas FeO*/MgO declines from >2.5 to 1.4. Ce/Yb and Hf/Lu triple northward, in part reflecting suppression of HREE enrichment by deep-crustal garnet. Rb, Cs, Th, and U contents all rise markedly from S to N, but Rb/Cs values double northward — opposite to prediction were the regional alkali enrichment controlled by sediment subduction. K/Rb drops steeply and scatters greatly within many (biotite-free) andesitic suites. Wide diversity in Zr/Hf, Zr/Rb, Ba/Ta, and Ba/La within and among neighboring suites (which lack zircon and alkali feldspar) largely reflects local variability of intracrustal (not slab or mantle) contributions. Pb-isotope data define a limited range that straddles the Stacey-Kramers line, is bracketed by values of local basement rocks, in part plots above the field of Nazca plate sediment, and shows no indication of a steep (mantle+sedimentary) Pb mixing trend. 87Sr/86Sr values rise northward from 0.7036 to 0.7057, and 143Nd/144Nd values drop from 0.5129 to 0.5125. A northward climb in basal elevation of volcanic-front edifices from 1350 m to 4500 m elevation coincides with a Bougueranomaly gradient from −95 to −295 mgal, interpreted to indicate thickening of the crust from 30–35 km to 50–60 km. Complementary to the thickening crust, the mantle wedge beneath the front thins northward from about 60 km to 30–40 km (as slab depth is constant). The thick northern crust contains an abundance of Paleozoic and Triassic rocks, whereas the proportion of younger arc-intrusive basement increases southward. Primitive basalts are unknown anywhere along the arc. Base-level isotopic and chemical values for each volcano are established by blending of subcrustal and deep-crustal magmas in zones of melting, assimilation, storage and homogenization (MASH) at the mantle-crust transition. Scavenging of mid-to upper-crustal silicic-alkalic melts and intracrustal AFC (prominent at the largest center) can subsequently modify ascending magmas, but the base-level geochemical signature at each center reflects the depth of its MASH zone and the age, composition, and proportional contribution of the lowermost crust.


Subduction Mantle Wedge Bougueranomaly Volcanic Front Benioff Zone 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Aldrich LT, Tatel HE, Tuve MA, Wetherill GW (1958) The Earth's crust: Carnegie Inst Wash Yearbook 57:104–111Google Scholar
  2. Arculus RJ, Johnson RW (1978) Criticism of generalized models for the magmatic evolution of arc-trench systems. Earth Planet Sci Lett 39:118–126Google Scholar
  3. Arculus RJ, Johnson RW (1981) Island-arc magma sources: A geochemical assessment of the roles of slab-derived components and crustal contamination. Geochem J 15:109–133Google Scholar
  4. Arculus RJ, Powell R (1986) Source component mixing in the regions of arc magma generation. J Geophys Res 91:5913–5926Google Scholar
  5. Arth JG (1976) Behavior of trace elements during magmatic processes — A summary of theoretical models and their applications. J Research US Geol Survey 4:41–47Google Scholar
  6. Bacon CR, Druitt TH (1988) Compositional evolution of the zoned calcalkaline magma chamber of Mount Mazama, Crater Lake, Oregon. Contrib Mineral Petrol 98:224–256Google Scholar
  7. Barazangi M, Isacks BL (1976) Spatial distribution of earthquakes and subduction of the Nazca plate beneath South America. Geology 4:686–692Google Scholar
  8. Barreiro B (1983) Pb isotopic compositions of South Sandwich Island volcanic rocks and their bearing on magma genesis in intra-oceanic island arcs. Geochim Cosmochim Acta 47:817–822Google Scholar
  9. Barreiro B, Cameron M, Cameron K, Grunder A (1982) A lead isotope study of silicic and intermediate volcanic rocks from south-central Chile and the Sierra Madre Occidental, Mexico. Carnegie Inst Wash Yearbook 81:494–498Google Scholar
  10. Bevis M, Isacks BL (1984) Hypocentral trend surface analysis: Probing the geometry of Benioff zones. J Geophys Res 89:6153–6170Google Scholar
  11. Caminos R (1979) Cordillera Frontal. In: Segundo Simposio de Geologia Regional Argentina. Córdoba, Academia Nacional de Ciencias 1:397–453Google Scholar
  12. Caminos R, Cingolani CA, Hervé F, Linares E (1982) Geochronology of the pre-Andean metamorphism and magmatism in the Andean Cordillera between latitudes 30° and 36°S. Earth-Science Reviews 18:333–352Google Scholar
  13. Charrier R (1981) Geologie der Chilenischen Hauptkordillere zwischen 34° and 34°30′ südlicher Breite und ihre tektonische, magmatische, und paläogeographische Entwicklung. Berliner Geowiss Abh (A) 36:270 pp BerlinGoogle Scholar
  14. Chase CG (1978) Plate kinematics: The Americas, East Africa, and the rest of the world. Earth Planet Sci Lett 37:355–368Google Scholar
  15. Coira B, Davidson J, Mpodozis C, Ramos V (1982) Tectonic and magmatic evolution of the Andes of northern Argentina and Chile. Earth-Science Reviews 18:303–332Google Scholar
  16. Conrad WK, Kay RW (1984) Ultramafic and mafic inclusions from Adak Island: Crystallization history and implications for the nature of primary magmas and crustal evolution in the Aleutian arc. J Petrology 25:88–125Google Scholar
  17. Coulon C, Thorpe RS (1981) Role of continental crust in petrogenesis of orogenic volcanic associations. Tectonophysics 77:79–93Google Scholar
  18. Dasch EJ (1981) Lead isotopic composition of metalliferous sediments from the Nazca plate. Geol Soc Amer Memoir 154:199–209Google Scholar
  19. Davidson JP, Dungan MA, Ferguson KM, Colucci MT (1987) Crust-magma interactions and the evolution of arc magmas: The San Pedro-Pellado volcanic complex, southern Chilean Andes. Geology 15:443–446Google Scholar
  20. Delpino DH, Bermudez AM (1985) Volcan Plateado. Actas del IV Congreso Geol Chileno 3:108–119Google Scholar
  21. DePaolo DJ (1981) Trace element and isotopic effects of combined wall rock assimilation and fractional crystallization. Earth Planet Sci Lett 53:189–202Google Scholar
  22. Déruelle B (1979) Pétrologie d'un volcanisme de marge active: Atacama et Andes Méridionales. Orsay, Université de Paris, XI, These, 403 pGoogle Scholar
  23. Déruelle B (1982) Petrology of the Plio-Quaternary volcanism of the south-central and meridional Andes. J Volcanol Geotherm Res 14:77–124Google Scholar
  24. Déruelle B, Harmon RS, Moorbath S (1983) Combined Sr-O isotope relationships and petrogenesis of Andean volcanics of South America. Nature 302:814–816Google Scholar
  25. Diez Rodriguez A, Introcaso A (1986) Perfil transcontinental sudamericano en el paralelo 39°S. Geoacta (Buenos Aires) 13:179–201Google Scholar
  26. Dragícevic M (1970) Carta Gravimétrica de los Andes meridionales e intertretación de las anomalias de gravedad de Chile central. Departamento de Geofisica y Geodesia, Universidad de Chile, Publicación No. 93Google Scholar
  27. Dragícevic M, Kausel E, Lomnitz C, Meinardus H, Silva L (1961) Levantamiento gravimétrico de Chile: Anales de la Facultad de Ciencias Fisicas y Matemáticas. Universidad de Chile 18:221–242Google Scholar
  28. Drake RE (1976) Chronology of Cenozoic igneous and tectonic events in the central Chilean Andes — latitudes 35°30′ to 36° S. J Volcanol Geothermal Res 1:265–284Google Scholar
  29. Drake RE, Vergara M, Munizaga F, Vicente JC (1982) Geochronology of Mesozoic-Cenozoic magmatism in central Chile, Lat. 31°–36°S. Earth Sci Rev 18:353–363Google Scholar
  30. Ewart A, Hawkesworth CJ (1987) The Pleistocene-Recent Tonga-Kermadec arc lavas: Interpretation of new isotopic and rare earth data in terms of a depleted mantle source model. J Petrology 28:495–530Google Scholar
  31. Francis PW, Thorpe RS, Moorbath S, Kretzschmar GA, Hammill M (1980) Strontium isotope evidence for crustal contamination of calc-alkaline volcanic rocks from Cerro Galan, northwest Argentina. Earth Planet Sci Lett 48:257–267Google Scholar
  32. Frey FA, Gerlach DC, Hickey RL, Lopez-Escobar L, Munizaga F (1984) Petrogenesis of the Laguna del Maule volcanic complex, Chile (36°S). Contrib Mineral Petrol 88:133–149Google Scholar
  33. Gardeweg M (1981) El volcanismo cenozoico superior del área del Nevado de Longavi: Una zona de transición en los Andes de Chile central. VIII Congreso Geológico Argentino, San Luis, Actas III:221–240Google Scholar
  34. Gerlach DC, Frey FA, Moreno H, López-Escobar L (1987) Recent volcanics of the Puyehue-Cordon Caulle region, southern Andes, Chile (40.5°S), I. Petrogenesis of evolved lavas. J Petrology, in pressGoogle Scholar
  35. Gill JB (1981) Orogenic Andesites and Plate Tectonics. Springer, Berlin Heidelberg New York, 390 pGoogle Scholar
  36. Gill JB (1984) Sr-Pb-Nd isotopic evidence that both MORB and OIB sources contribute to oceanic island-arc magmas in Fiji: Earth and Planetary Science Letters 68:443–458Google Scholar
  37. González-Bonorino F (1971) Metamorphism of the crystalline basement of central Chile. J Petrol 12:149–176Google Scholar
  38. Green TH, Pearson NJ (1986) Ti-rich accessory phase saturation in hydrous mafic-felsic compositions at high P, T. Chem Geol 54:185–201Google Scholar
  39. Griffin WL, O'Reilly SY (1986) The lower crust in eastern Australia: xenolith evidence. In: Dawson JB et al. (eds) The Nature of the Lower Continental Crust. Geol Soc Spec Publ 24:363–374Google Scholar
  40. Hamilton W (1979) Tectonics of the Indonesian Region. US Geol Surv Prof Paper 1078, 345 pGoogle Scholar
  41. Harmon RS, Barreiro BA, Moorbath S, Hoefs J, Francis PW, Thorpe RS, Déruelle B, McHugh J, Viglino JA (1984) Regional O-, Sr-, and Pb-isotope relationships in late Cenozoic calc-alkaline lavas of the Andean Cordillera. J Geol Soc London 141:803–822Google Scholar
  42. Hart SR (1984) A large-scale isotopic anomaly in the Southern hemisphere mantle. Nature 309:753–757Google Scholar
  43. Hawkesworth CJ, Hammill M, Gledhill AR, van Calsteren P, Rogers NW (1982) Isotope and trace element evidence for latestage intracrustal melting in the High Andes. Earth Planet Sci Lett 58:240–254Google Scholar
  44. Herron EM (1981) Chile margin near lat 38°S Evidence for a genetic relationship between continental and marine geologic features or a case of curious coincidences? In: L.D. Kulm et al. (eds) Nazca Plate: Crustal Formation and Andean Convergence. Geol Soc Amer Memoir 154:755–760Google Scholar
  45. Hickey RL, Frey FA, Gerlach DC, López-Escobar L (1986) Multiple sources for basaltic arc rocks from central south Chile: Trace element and isotopic evidence for contributions from subducted oceanic crust, mantle, and continental crust. J Geophys Res 91:5963–5983Google Scholar
  46. Hildreth W (1981) Gradients in silicic magma chambers: Implications for lithospheric magmatism. J Geophys Res 86:10153–10192Google Scholar
  47. Hildreth W, Grunder AL, Drake RE (1984) The Loma Seca Tuff and the Calabozos caldera: A major ash-flow and caldera complex in the southern Andes of central Chile. Geol Soc Amer Bull 95:45–54Google Scholar
  48. Hoffman NRA, McKenzie DP (1985) The destruction of geochemical heterogeneities by differential fluid motions during mantle convection. Geophys J (RAS) 82:163–206Google Scholar
  49. Hofmann AW, Jochum KP, Seufert M, White WM (1986) Nb and Pb in oceanic basalts: new constraints on mantle evolution. Earth Planet Sci Lett 79:33–45Google Scholar
  50. Huang W-L, Wyllie PJ (1986) Phase relationships of gabbrotonalite-granite-water at 15 kb with applications to differentiation and anatexis. Amer Mineral 71:301–316Google Scholar
  51. Hussong DM and others (1976) Crustal structure of the Peru-Chile trench: 8°S–12°S latitude. In: Sutton GH et al. (eds) The Geophysics of the Pacific Ocean Basin and its Margin. Amer Geophys Union, Geophysical Monograph 19:71–85Google Scholar
  52. Introcaso A (1976) Modelo gravimétrico provisorio de corteza andina en el paralelo 36°S. Geoacta (Buenos Aires) 8:107–115Google Scholar
  53. Introcaso A, Huerta E (1972) Perfil gravimétrico transcontinental sudamericano (paralelo 32° S). Institute Panamericano de Geografia e Historia (Buenos Aires), Revista Cartográfica 22:133–159Google Scholar
  54. Irvine TN, Baragar WRA (1981) A guide to the chemical classification of the common volcanic rocks. Can J Earth Sci 8:523–548Google Scholar
  55. James DE (1971) Andean crustal and upper mantle structure. J Geophys Res 76:3264–3271Google Scholar
  56. Jordan TE, Isacks BL, Allmendinger RW, Brewer JA, Ramos VA, Ando CJ (1983) Andean tectonics related to geometry of subducted Nazca plate. Geo Soc Amer Bull 94:341–361Google Scholar
  57. Kausel E, Lomnitz C (1968) Tectonics of Chile: Pan-American symposium on the upper mantle, Proceedings, v. 2, p. 47–67. International Upper Mantle Symposia, No. 22-B, MexicoGoogle Scholar
  58. Kay RW (1977) Geochemical constraints on the origin of Aleutian magmas. In Talwani M, Pittman III WC (eds) Island Arcs, Back-arc Basins, and Deep-sea Trenches. Amer Geophys Union, Maurice Ewing Series 1:229–242Google Scholar
  59. Kay RW (1980) Volcanic arc magmas: Implications of a meltingmixing model for element recycling in the crust-upper mantle system. J Geol 88:497–522Google Scholar
  60. Kay RW, Kay SM (1986) Petrology and chemistry of the lower continental crust: an overview. In: Dawson JB et al. (eds) The Nature of the Lower Continental Crust. Geol Soc Spec Publ 24:147–159Google Scholar
  61. Kay RW, Sun SS, Lee-Hu C-N (1978) Pb and Sr isotopes in volcanic rocks from the Aleutian Islands and the Pribilof Islands, Alaska. Geochim Cosmochim Acta 42:263–273Google Scholar
  62. Kay SM, Kay RW (1985) Role of crystal cumulates and the oceanic crust in the formation of the lower crust of the Aleutian arc. Geology 13:462–464Google Scholar
  63. Kay SM, Maksaev V, Moscoso R, Mpodozis C, Nasi C (1987) Probing the evolving Andean lithosphere: Mid-late Tertiary Magmatism in Chile (29°–30.5°S) over the modern zone of subhorizontal subduction. J Geophys Res, in pressGoogle Scholar
  64. Kay SM, Rapela CW (1986) Mixing of arc and continental alkaline sources in the southern Andes: Geochemistry of Lower-Mid Tertiary Andean volcanic rocks (40°–42°S). Eos 67:1281Google Scholar
  65. Kulm LD, Schweller WJ, Masias A (1977) A preliminary analysis of the subduction processes along the Andean continental margin, 6° to 45°S, in M. Talwani and W.C. Pitman III (eds) Island Arcs, Deep Sea Trenches, and Back-Arc Basins. Amer Geophys Union, Maurice Ewing Series 1:285–301Google Scholar
  66. Levi B, Aguirre L (1981) Ensialic spreading-subsidence in the Mesozoic and Paleogene Andes of central Chile. J Geol Soc London 138:75–81Google Scholar
  67. Llambías EJ (1966) Geología y petrografïa del volcan Payún Matrú. Acta Geológica Lilloana 8:265–310Google Scholar
  68. Llambias EJ, Danderfer JC, Palacios M, Brogioni N (1978) Las rocas igneas cenozóicas del Volcán Domuyo y áreas adyacentes. VII Congreso Geologico Argentino, Neuquén, Actas 2:569–584Google Scholar
  69. Llambías EJ, Palacios M, Danderfer JC (1982) Las erupciones Holocenas del Volcan Tromen (Provincia del Neuquen) y su significado en un perfil transversal E-O a la latitud de 37°S. Quinto Congreso Latinoamericano de Geología, Argentina, 1982, Actas, 3:537–545Google Scholar
  70. Lomnitz C (1962) On Andean structure. J Geophys Res 67:351–363Google Scholar
  71. López-Escobar L (1984) Petrology and chemistry of volcanic rocks of the southern Andes. In: RS Harmon, BA Barreiro (eds) Andean Magmatism, chemical and isotopic constraints. Shiva Publ Co, Cheshire (UK) 47–71Google Scholar
  72. López-Escobar L, Frey FA, Vergara M (1977) Andesites and highalumina basalts from the central-south Chile High Andes: Geochemical evidence bearing on their petrogenesis. Contrib Mineral Petrol 63:199–228Google Scholar
  73. López-Escobar L, Moreno RH, Tagiri M, Notsu K, Onuma N (1985) Geochemistry of lavas from San José volcano, Southern Andes (33°45′S). Geochem J 19:209–222Google Scholar
  74. López-Escobar L, Vergara M, Frey FA (1981) Petrology and geochemistry of lavas from Antuco volcano, a basaltic volcano of the southern Andes (37°25′S). J Volcanol Geotherm Res 11:329–352Google Scholar
  75. Luhr JF, Carmichael ISE (1981) The Colima Volcanic Complex, Mexico: II. Late Quaternary cinder cones. Contrib Mineral Petrol 76:127–147Google Scholar
  76. Marangunic C, Moreno H, Varela J (1979) Observaciones sobre los depósitos de relleno de la depresión longitudinal de Chile entre los rios Tinguiririca y Maule. Segundo Congreso Geologicó Chileno (Arica) 3:129–139Google Scholar
  77. McCulloch MT, Bradshaw JY, Taylor SR (1987) Sm-Nd and Rb-Sr isotopic and geochemical systematics in Phanerozoic granulites from Fiordland, southwest New Zealand. Contrib Mineral Petrol 97:183–195Google Scholar
  78. McLennan SM, Taylor SR (1981) Role of subducted sediments in island-arc magmatism: Constraints from REE patterns. Earth Planet Sci Lett 54:423–430Google Scholar
  79. Meijer A (1976) Pb and Sr isotopic data bearing on the origin of volcanic rocks from the Mariana island-arc system. Geol Soc Amer Bull 87:1358–1369Google Scholar
  80. Menzies M, Hawkesworth CJ (1987) Mantle Metasomatism. Academic Press, London, 410 pGoogle Scholar
  81. Minster JB, Jordan TH (1978) Present-day plate motions: J Geophys Res 83:5331–5354Google Scholar
  82. Miyashiro A (1974) Volcanic rock series in island arcs and active continental margins. Amer J Science, v. 274, p. 321–355Google Scholar
  83. Mordojovich KC (1974) Geology of a part of the Pacific margin of Chile. In: Burk CA, Drake CL (eds) The Geology of Continental Margins. New York, Springer-Verlag, 591–598Google Scholar
  84. Moreno H (1974) Airplane flight over active volcanoes of central south Chile: Santiago, International Symposium on Volcanology, International Association of Volcanology and Chemistry of the Earth's Interior. Guidebook Excursion D-3, 56 pGoogle Scholar
  85. Moreno H (1975) Características petrológicas del volcanismo Cenozóico Superior en los Andes del Sur de Chile (39°00′–41°30′S). VI Congreso Geológico Argentino, Bahía Blanca, Actas 2:131–147Google Scholar
  86. Moreno H, Naranjo JA, López L (1979) Geología y petrología de la cadena volcanica Osorno-Puntiagudo, Andes del Sur, latitud 41°10′S. Segundo Congreso Geologico Chileno E: 109–131Google Scholar
  87. Morris JD, Hart SR (1983) Isotopic and incompatible element constraints on the genesis of island arc volcanics, Cold Bay and Amak Island, Aleutians. Geochim Cosmochim Acta 47:2015–2030Google Scholar
  88. Muñoz J, Stern C (1985) El complejo volcanico Pino Hachado. IV Congreso Geol Chileno, Actas 3:4–380 to 4–412Google Scholar
  89. Nicholls IA, Harris KL (1980) Experimental rare earth element partition coefficients for garnet, clinopyroxene, and amphibole coexisting with andesitic and basaltic liquids. Geochim Cosmochim Acta 44:287–308Google Scholar
  90. Nye CJ, Reid MR (1986) Geochemistry of primary and least fractionated lavas from Okmok volcano, central Aleutians: Implications for arc magmagenesis. J Geophys Res 91:10271–10287Google Scholar
  91. Pankhurst RJ, O'Nions RK (1973) Determination of Rb/Sr and 87Sr/86Sr ratios of some standard rocks and evaluation of X-ray fluorescence spectrometry in Rb-Sr geochemistry. Chem Geol 12:127–136Google Scholar
  92. Peacock MA (1931) Classification of igneous rock series. J Geol 39:54–67Google Scholar
  93. Perfit MR, Kay RW (1986) Comment on “Isotopic and incompatible element constraints on the genesis of island arc volcanics from Cold Bay and Amak Island, Aleutians, and implications for mantle structure” by J.D. Morris and S.R. Hart. Geochim Cosmochim Acta 50:477–481Google Scholar
  94. Plafker G (1972) Alaskan earthquake of 1964 and Chilean earthquake of 1960: Implications for arc tectonics. J Geophys Res 77:901–925Google Scholar
  95. Ramos VA, Jordan TE, Almendinger RW, Mpodozis C, Kay SM, Cortes JM, Palma M (1986) Paleozoic terranes of the central Argentine-Chilean Andes. Tectonics 5:855–880Google Scholar
  96. Richard P, Shimizu N, Allegre CJ (1976) 143Nd/144Nd, a natural tracer: an application to oceanic basalts. Earth Planet Sci Lett 31:269–278Google Scholar
  97. Rogers NW, Hawkesworth CJ (1982) Proterozoic age and cumulate origin for granulite xenoliths, Lesotho. Nature 299:409–413Google Scholar
  98. Saunders AD, Tarney J, Weaver SD (1980) Transverse geochemical variations across the Antarctic Peninsula: Implications for the genesis of calc-alkaline magmas. Earth Planet Sci Lett 46:344–360Google Scholar
  99. Scholl DW, Christensen MH, Von Huene R, Marlow MS (1970) Peru-Chile trench sediments and sea-floor spreading. Geol Soc Am Bull 81:1339–1360Google Scholar
  100. Scholl DW, Marlow MS (1974) Sedimentary sequence in modern Pacific trenches and the deformed circum-Pacific eugeosyncline. In: Dott RH Jr, Shaver RH, eds, Modern and Ancient Geosynclinal Sedimentation. Society of Economic Paleontologists and Mineralogists Special Publication 19:193–211Google Scholar
  101. Scholl DW, Marlow MS, Cooper AK (1977) Sediment subduction and offscraping at Pacific margins. In: Talwani M, Pitman WC III, eds, Island Arcs, Deep Sea Trenches, and Back-Arc Basins. Am Geophys U, Maurice Ewing Series 1:199–210Google Scholar
  102. Schweller WJ, Kulm LD, Prince RA (1981) Tectonics, structure, and sedimentary framework of the Peru-Chile Trench. Geol Soc Am Mem 154:323–349Google Scholar
  103. Shaw HR (1980) The fracture mechanisms of magma transport from the mantle to the surface. In: RB Hargraves, ed, Physics of Magmatic Processes. Princeton Univ Press, 201–264Google Scholar
  104. Skewes MA, Stern CR (1979) Petrology and geochemistry of alkali basalts and ultramafic inclusions from the Pali-Aike volcanic field in southern Chile and the origin of the Patagonian plateau basalts. J Volcanol Geotherm Res 6:3–25Google Scholar
  105. Stacey JS, Kramers JD (1975) Approximation of terrestrial lead isotope evolution by a two-stage model. Earth Planet Sci Lett 26:207–221Google Scholar
  106. Stauder W (1973) Mechanism and spatial distribution of Chilean earthquakes with relation to subduction of the oceanic plate. J Geophys Res 78:5033–5061Google Scholar
  107. Stern CR, Futa K, Muehlenbachs K, Dobbs FM, Munoz J, Godoy E, Charrier R (1984) Sr, Nd, Pb, and O isotope composition of late Cenozoic volcanics, northernmost SVZ (33–34°S). In: Harmon RS, Barreiro BA, eds, Andean Magmatism, Chemical and Isotopic Constraints. Shiva Publ Co, Cheshire (U.K.), 96–105Google Scholar
  108. Stern CR, Futa K, Saul S, Skewes MA (1986) Nature and evolution of the subcontinental mantle lithosphere below southern South America and implication for Andean magma genesis. Revista Geol Chile 27:41–53Google Scholar
  109. Stern CR, Skewes MA, Duran M (1976) Volcanismo orogénico en Chile Austral. Primero Congreso Geolégico Chileno, Actas 2:F195-F212Google Scholar
  110. Swift SA, Carr MJ (1974) The segmented nature of the Chilean seismic zone. Phys Earth Planet Interiors 9:183–191Google Scholar
  111. Takahashi E (1986) Genesis of calc-alkali andesite magma in a hydrous mantle-crust boundary: Petrology of lherzolite xenoliths from the Ichinomegata crater, Oga Peninsula, northeast Japan, Part II. J Volc Geoth Res 29:355–395Google Scholar
  112. Tarney J, Windley BF (1977) Chemistry, thermal gradients, and evolution of the lower continental crust. J Geol Soc 134:153–172Google Scholar
  113. Tatsumi Y, Nakano S (1984) Lateral variation of K/Hf ratios in Quaternary volcanic rocks of northeastern Japan. Geochem J 18:305–314Google Scholar
  114. Tatsumi Y, Sakuyama M, Fukuyama H, Kushiro I (1983) Generation of arc basalt magmas and thermal structure of the mantle wedge in subduction zones. J Geophys Res 88:5815–5825Google Scholar
  115. Taylor SR, McLennan SM (1985) The Continental Crust: its Composition and Evolution. Oxford, Blackwell Sci Publ, 312 pGoogle Scholar
  116. Thiele R (1980) Hoja Santiago, Carta Geológica de Chile, escala 1∶250000. Instituto de Investigaciones Geológicas, No. 39. (Map and 51-page pamphlet)Google Scholar
  117. Thiele R, Katsui Y (1969) Contribucion al conocimiento del volcanismo post-Miocenico de los Andes en la provincia de Santiago, Chile. Departamento de Geología, Universidad de Chile, Publicación 35, 23 pGoogle Scholar
  118. Thornburg TM, Kulm LD (1987a) Sedimentation in the Chile Trench: Depositional morphologies, lithofacies, and stratigraphy. Geol Soc Amer Bull 98:33–52Google Scholar
  119. Thornburg TM, Kulm LD (1987b) Sedimentation in the Chile Trench: Petrofacies and provenance. J Sed Petrol 57:55–74Google Scholar
  120. Thorpe R, Francis PW, Hammill M, Baker MCW (1982) The Andes. In: Thorpe RS (ed) Andesites. John Wiley and Sons, London, p. 187–205Google Scholar
  121. Tilton GR (1979) Isotopic studies of Cenozoic Andean calc-alkaline rocks. Carnegie Inst Wash Yearbook 78:298–304Google Scholar
  122. Tilton GR (1983) Evolution of depleted mantle: The lead perspective. Geochim Cosmochim Acta 47:1191–1197Google Scholar
  123. Tilton GR, Barreiro BA (1980) Origin of lead in Andean calcalkaline lavas, southern Peru. Science 210:1245–1247Google Scholar
  124. Unruh DM, Tatsumoto M (1976) Lead isotopic composition and U, Th, and Pb concentrations in sediments and basalts from the Nazca plate. In Yeats RS, Hart SR, eds, Initial Reports of the Deep Sea Drilling Project 34:341–347Google Scholar
  125. Vergara M, Muñoz J (1982) La Formacion Cola de Zorro en la alta cordillera andina Chilena (36°–39° Lat. S), sus caracteristicas petrográficas y petrológicas: Una revisión. Revista Geoló-gica de Chile 17:31–46Google Scholar
  126. Watson EB (1982) Basalt contamination by continental crust: Some experiments and models. Contrib Mineral Petrol 80:73–87Google Scholar
  127. Watson EB, Harrison TM (1983) Zircon saturation revisited: Temperature and composition effects in a variety of crustal magma types. Earth Planet Sci Lett 64:295–304Google Scholar
  128. White WM, Dupré B (1986) Sediment subduction and magma genesis in the Lesser Antilles: Isotopic and trace element constraints. J Geophys Res 91:5927–5941Google Scholar
  129. White WM, Patchett J (1984) Hf-Nd-Sr isotopes and incompatible element abundances in island arcs: Implications for magma origins and crust-mantle evolution. Earth Planet Sci Lett 67:167–185Google Scholar
  130. Wortel MJR, Vlaar NJ (1978) Age-dependent subduction of oceanic lithosphere beneath western South America. Phys Earth Planet Inter 17:201–208Google Scholar
  131. Wyllie PJ (1977) Crustal anatexis: an experimental review. Tectonophysics 43:41–71Google Scholar
  132. Wyllie PJ (1982) Subduction products according to experimental prediction. Geol Soc Amer Bull 93:468–476Google Scholar
  133. Wyllie PJ, Huang W-L, Stern CR, Maaloe S (1976) Granitic magmas: possible and impossible sources, water contents, and crystallization sequences. Can J Earth Sci 13:1007–1019Google Scholar
  134. Yrigoyen MR (1979) Cordillera Principal. In: Segundo Simposio de Geología Regional Argentina. Córdoba, Academia Nacional de Ciencias 1:651–694Google Scholar
  135. Zartman RE, Doe BR (1981) Plumbotectonics-the model. Tectonophysics 75:135–162Google Scholar

Copyright information

© Springer-Verlag 1988

Authors and Affiliations

  • Wes Hildreth
    • 1
  • Stephen Moorbath
    • 2
  1. 1.USGSMenlo ParkUSA
  2. 2.Department of Earth SciencesUniversity of OxfordUK

Personalised recommendations