Contributions to Mineralogy and Petrology

, Volume 55, Issue 2, pp 147–179 | Cite as

Equilibrium-disequilibrium relations in the Monte Rosa Granite, Western Alps: Petrological, Rb-Sr and stable isotope data

  • Martin Frey
  • Johannes C. Hunziker
  • James R. O'Neil
  • Hans W. Schwander


Nine samples from the Monte Rosa Granite have been investigated by microscopic, X-ray, wet chemical, electron microprobe, stable isotope and Rb-Sr and K-Ar methods. Two mineral assemblages have been distinguished by optical methods and dated as Permian and mid-Tertiary by means of Rb-Sr age determinations. The Permian assemblage comprises quartz, orthoclase, oligoclase, biotite, and muscovite whereas the Alpine assemblage comprises quartz, microcline, albite+epidote or oligoclase, biotite, and phengite.

Disequilibrium between the Permian and Alpine mineral assemblages is documented by the following facts: (i) Two texturally distinguishable generations of white K-mica are 2 M muscovite (Si=3.1–3.2) and 2 M or 3 T phengite (Si=3.3–3.4). Five muscovites show Permian Rb-Sr ages and oxygen isotope fractionations indicating temperatures between 520 and 560 ° C; however, K-Ar ages are mixed or rejuvenated. Phengite always shows mid-Tertiary Rb-Sr ages, (ii) Two biotite generations can be recognized, although textural evidence is often ambiguous. Three out of four texturally old biotites show mid-Tertiary Rb-Sr cooling ages while the oxygen isotopic fractionations point to Permian, mixed or Alpine temperatures, (iii) Comparison of radiogenic and stable isotope relations indicates that the radiogenic isotopes in the interlayer positions of the micas were mobilized during Alpine time without recrystallization, that is, without breaking Al-O or Si-O bonds. High Ti contents in young muscovites and biotites also indicate that the octahedral (and tetrahedral) sites remained undisturbed during rejuvenation. (iv) “Isotopic reversals” in the order of O18 enrichment between K-feldspar and albite exist.

Arguments for equilibrium during Permian time are meagre because of Alpine overprinting effects. Texturally old muscovites show high temperatures and Permian Rb-Sr ages in concordancy with Rb-Sr whole rock ages. For the tectonically least affected samples, excellent concordance between quartz-muscovite and quartz-biotite “Permian temperatures” implies oxygen isotope equilibrium in Permian time which was undisturbed during Alpine metamorphism.

Arguments for equilibrium during the mid-Tertiary metamorphism are as follows: (i) Mid-Tertiary Rb-Sr mineral isochrons of up to six minerals exist, (ii) Oxygen isotope temperatures of coexisting Alpine phengites and biotites are concordant.

The major factor for the adjustment of the Permian assemblages to Alpine conditions was the degree of Alpine tectonic overprinting rather than the maximum temperatures reached during the mid-Tertiary Alpine metamorphism. The lack of exchange with externally introduced fluid phases in the samples least affected by tectonism indicates that the Monte Rosa Granite “stewed in its own juices”. This seems to be the major cause for the persistence of Permian ages and corresponding temperatures.


Stable Isotope Oxygen Isotope Isotope Fractionation Isochron Oxygen Isotope Fractionation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Albuquerque, C.A.R. de: Geochemistry of biotites from granitic rocks, Northern Portugal. Geochim. Cosmochim. Acta 37, 1779–1802 (1973)Google Scholar
  2. Armstrong, R.L., Jäger, E., Eberhardt, P.: A comparison of K-Ar and Rb-Sr ages on Alpine biotites. Earth Planet. Sci Letters 1, 13–19 (1966)Google Scholar
  3. Bambauer, H.U., Corlett, M., Eberhard, E., Viswanathan, K.: Diagrams for the determination of plagioclases using X-ray powder methods. Schweiz. Mineral. Petrog. Mitt. 47, 333–349 (1967)Google Scholar
  4. Bearth, P.: Geologie und Petrographie des Monte Rosa. Beitr. Geol. Karte Schweiz, N.F. 96, 94 p. (1952)Google Scholar
  5. Bearth, P.: Über einen Wechsel der Mineralfazies in der Wurzelzone des Penninikums. Schweiz. Mineral. Petrog. Mitt. 38, 363–373 (1958)Google Scholar
  6. Bearth, P.: Die Ophiolite der Zone von Zermatt-Saas Fee. Beitr. Geol. Karte Schweiz, N.F. 132, 130 p. (1967)Google Scholar
  7. Bortolami, G., Dal Piaz, G.V.: II substrato cristallino dell-Anfiteatro morenico di Rivoli-Avigliani (Prov. Torino) e alcune considerazioni sull'evoluzione paleogeografica e strutturale della eugeosinclinale piemontese. Mem. Soc. Ital. Sci. Nat. e Mus. Civ. Stor. Nat. Milano 18, 125–169 (1970)Google Scholar
  8. Bottinga, Y., Javoy, M.: Comments on oxygen isotope geothermometry. Earth Planet. Sci. Letters 20, 250–265 (1973)Google Scholar
  9. Butler, B.M.C.: Chemical study of minerals from the Moine schists of the Ardnamurchan Area, Argyllshire, Scotland. J. Petrol. 8, 233–267 (1967)Google Scholar
  10. Chatterjee, N.D., Johannes, W.: Thermal stability and standard thermodynamic properties of synthetic 2M1-Muscovite, KAl2[AlSi3O10(OH)2. Contrib. Mineral. Petrol. 48, 89–114 (1974)Google Scholar
  11. Cipriani, C., Sassi, F.P., Scolari, A.: Metamorphic white micas: Definitions of paragenetic fields. Schweiz. Mineral. Petrog. Mitt. 51, 259–302 (1971)Google Scholar
  12. Compagnoni, R., Maffeo, B.: Jadeite-bearing metagranites l.s. and related rocks in the Mount Mucrone Area (Sesia-Lanzo Zone, Western Italian Alps). Schweiz. Mineral. Petrog. Mitt. 53, 355–378 (1973)Google Scholar
  13. Dal Piaz, G.V.: Nuovi ritrovamenti di cianite alpina nel cristallino del Monte Rosa. Rend. Soc. ital. Mineral. Petrol. 27, 437–477 (1971)Google Scholar
  14. Dal Piaz, G.V.: Excursion to the Sesia Zone of the Schweiz. Mineralogische und Petrographische Gesellschaft. Schweiz. Mineral. Petrog. Mitt. 53, 477–490 (1973)Google Scholar
  15. Dal Piaz, G.V., Hunziker, J.C., Martinotti, G.: La zona Sesia-Lanzo e l'evoluzione tettonicometamorfica delle Alpi nordoccidentali interne. Mem. Soc. Geol. Ital. 11, 433–466 (1972)Google Scholar
  16. Devereux, I.: Oxygen isotope ratios of minerals from the regionally metamorphosed schists of Otago, New Zealand. New Zealand J. Sci. 11, 526–548 (1968)Google Scholar
  17. Ernst, W.G.: Significance of phengitic micas from low-grade schists. Am. Mineralogist 48, 1357–1373 (1963)Google Scholar
  18. Garlick, G.D., Epstein, S.: Oxygen isotope ratios in coexisting minerals of regionally metamorphosed rocks. Geochim. Cosmochim. Acta 31, 181–214 (1967)Google Scholar
  19. Goldsmith, J.R., Laves, F.: The microcline-sanidine stability relations. Geochim. Cosmochim. Acta 5, 1–19 (1954)Google Scholar
  20. Guidotti, C.V.: The mineralogy and petrology of the transition from the lower to upper sillimanite zone in the Oquossoc Area, Maine. J. Petrol. 11, 277–336 (1970)Google Scholar
  21. Hunziker, J.C.: Rb-Sr-Altersbestimmungen aus den Walliser Alpen. Hellglimmer- und Gesamtgesteinsalterswerte. Eclogae Geol. Helv. 62, 527–542 (1969)Google Scholar
  22. Hunziker, J.C.: Polymetamorphism in the Monte Rosa, Western Alps. Eclogae Geol. Helv. 63, 151–161 (1970)Google Scholar
  23. Hunziker, J.C.: Rb-Sr and K-Ar age determination and the Alpine tectonic history of the Western Alps. Mem 1st Geol. Mineral. Univ. Padova 31, 55 p. (1974)Google Scholar
  24. Hunziker, J.C., Bearth, P.: Rb-Sr-Alterbestimmungen aus den Walliser Alpen. Biotitalterswerte und ihre Bedeutung für die Abkühlungsgeschichte der alpinen Metamorphose. Eclogae Geol. Helv. 62, 205–222 (1969)Google Scholar
  25. Jäger, E.: Die alpine Orogenese im Lichte der radiometrischen Altersbestimmung. Eclogae Geol. Helv. 66, 11–21 (1973)Google Scholar
  26. Köppel, V., Grünenfelder, M.: Concordant U-Pb ages of monazite and xenotime from the Central Alps and the timing of the high temperature Alpine metamorphism, a preliminary report. Schweiz. Mineral. Petrog. Mitt. 55, 129–132 (1975)Google Scholar
  27. Kwak, T.A.P.: Ti in biotite and muscovite as an indicator of metamorphic grade in almandine amphibolite facies rocks from Sudbury, Ontario. Geochim. Cosmochim. Acta 32, 1222–1229 (1968)Google Scholar
  28. Lambert, R.S.J.: The mineralogy and metamorphism of the Moine schists of the Morar and Knoydart District of Inverness-shire. Trans. Roy. Soc. Edinburgh 63, 553–588 (1959)Google Scholar
  29. Oki, Y.: Biotites in metamorphic rocks. Jap. J. Geol. Geogr. 32, 497–506 (1961)Google Scholar
  30. O'Neil, J.R., Chappell, B.W.: A stable isotope study of the Berridale Batholith, Southeastern Australia. Trans. Am. Geophys. Union 56, 473 (1975)Google Scholar
  31. O'Neil, J.R., Ghent, E.D.: Stable isotope study of coexisting metamorphic minerals from the Esplanade Range, Bristish Columbia. Geol. Soc. Am. Bull. 86 (in press)Google Scholar
  32. O'Neil, J.R., Kharaka, Y.K.: Hydrogen and oxygen isotope exchange reactions between clay minerals and water. Geochim. Cosmochim. Acta 39, (in press)Google Scholar
  33. O'Neil, J.R., Taylor, H.P.: The oxygen and cation exchange chemistry of feldspars. Am. Mineralogist 52, 1414–1437 (1967)Google Scholar
  34. Peters, T.: Zur quantitativen röntgenographischen Bestimmung von Albit und Kalifeldspat in pelitischen Sedimentfraktionen. Schweiz. Mineral. Petrog. Mitt. 45, 115–121 (1965)Google Scholar
  35. Purdy, J.W., Jäger, E.: K-Ar ages on rock-forming minerals from the central alps, (in prep.)Google Scholar
  36. Radaslovich, E.W., Norrish, K.: The cell dimensions and symmetry of layer-lattice silicates. I. Some structural considerations. Am. Mineralogist 47, 599–616 (1962)Google Scholar
  37. Rock-Color Chart. Geol. Soc. Am., New York (1948)Google Scholar
  38. Roever, W.P. de, Nijhuis, H.J.: Plurifacial alpine metamorphism in the eastern Betic Cordilleras (SE Spain), with special reference to the genesis of the glaucophane. Geol. Rundschau 53, 324–336 (1964)Google Scholar
  39. Shieh, Y.N., Taylor, H.P.: Oxygen and hydrogen isotope studies of contact metamorphism in the Santa Rosa Range, Nevada and other areas. Contrib. Mineral. Petrol. 20, 306–356 (1969)Google Scholar
  40. Spry, A.: Metamorphic textures. 350 p. Oxford: Pergamon Press 1969Google Scholar
  41. Steck, A.: Petrographische und tektonische Untersuchungen am Zentralen Aaregranit und seinen altkristallinen Hüllgesteinen im westlichen Aarmassiv im Gebiet Belalp-Grisighorn. Beitr. Geol. Karte Schweiz., N.F. 130, 99 p. (1966)Google Scholar
  42. Streckeisen, A.: Classification and nomenclature of plutonic rocks. Geol. Rundschau 63, 773–786 (1974)Google Scholar
  43. Suzuoki, T., Epstein, S.: Hydrogen isotope fractionation between OH-bearing minerals and water. Geochim. Cosmochim. Acta 39, (in press)Google Scholar
  44. Taylor, H.P., Albee, A.L., Epstein, S.: O18/O16 ratios of coexisting minerals in three assemblages of kyanite-zone pelitic schist. J. Geol. 71, 513–522 (1963)Google Scholar
  45. Taylor, H.P., Epstein, S.: Relation between O18/O16 ratios in coexisting minerals of igneous and metamorphic rocks. I. Principles and experimental results. Geol. Soc. Am. Bull. 73, 461–480 (1962)Google Scholar
  46. Velde, B.: Phengite micas: synthesis, stability and natural occurrence. Am. J. Sci. 263, 886–913 (1965)Google Scholar
  47. Velde, B.: Si+4 content of natural phengites. Contrib. Mineral. Petrol. 14, 250–258 (1967)Google Scholar
  48. Wendt, I.: Derivation of the formula for a regression line based on a least-square analysis. Internal Rep. Bundesanstalt für Bodenforschung, Hannover (1969)Google Scholar
  49. Wenk, E.: Die lepontinische Gneissregion und die jungen Granite der Valle della Mera. Eclogae Geol. Helv. 49, 251–265 (1956)Google Scholar
  50. Wenk, E., Schwander, H., Hunziker, J., Stern, W.: Zur Mineralchemie von Biotit in den Tessineralpen. Schweiz. Mineral. Petrog. Mitt. 43, 435–463 (1963)Google Scholar
  51. Wetzel, R.: Zur Petrographie und Mineralogie der Furgg-Zone (Monte Rosa-Decke). Schweiz. Mineral. Petrog. Mitt. 52, 161–236 (1972)Google Scholar
  52. Winchell, H.: The composition and physical properties of garnet. Am. Mineralogist 43, 595–600 (1958)Google Scholar
  53. Zwart, H.J.: The duality of orogenic belts. Geol. Mijnbouw 46, 283–309 (1967)Google Scholar

Copyright information

© Springer-Verlag 1976

Authors and Affiliations

  • Martin Frey
    • 1
  • Johannes C. Hunziker
    • 1
  • James R. O'Neil
    • 2
  • Hans W. Schwander
    • 3
  1. 1.Mineralogisch-petrographisches Institut der Universität BernBernSwitzerland
  2. 2.U.S. Geological SurveyMenlo Park
  3. 3.Mineralogisch-petrographisches Institut der Universität BaselSwitzerland

Personalised recommendations