Journal of Materials Science

, Volume 31, Issue 7, pp 1843–1855 | Cite as

Semi-automated image analysis of the true tensile drawing behaviour of polymers to large strains

  • A. R. Haynes
  • P. D. Coates


An image analysis system has been developed using commercially available hardware with custom software to investigate the deformation behaviour of solid polymers in uniaxial tension. This technique provides a rapid, semi-automated non-contacting method for determining true process stress-strain-strain-rate behaviour for both homogeneous and inhomogeneous deformation. The relative displacements of printed transverse grid lines are determined from images captured during a standard monotonic tensile test, providing local measures of strain. The examination of a time series of images allows the generation of true strain-rate data, and concurrent monitoring of the total draw force from the load cell allows the generation of true stress data at those times when the images are captured. Therefore, it is possible to produce a series of process uniaxial true stress-strain curves for individual “elements” of material within the gauge length of the specimen. Synthetic elastomers drawn at ambient temperature have been found to display relatively homogeneous deformation, resulting in a simple process axial stress-strain curve for the single-speed test, whereas in the case of inhomogeneous deformation (“necking”) exhibited by polypropylene, it is verified that each element of material experiences a slightly different deformation process. This spatially variant deformation is related to the original location of the particular element with respect to the point of neck initiation.


Inhomogeneous Deformation Draw Force Tensile Drawing Variant Deformation Monotonic Tensile 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    A. J. Wills, G. Capaccio and I. M. Ward, J. Polym. Sci. Polymer Phys. Ed. 18 (1980) 493.CrossRefGoogle Scholar
  2. 2.
    M. A. Wilding and I. M. Ward, Polymer 22 (1981) 870.CrossRefGoogle Scholar
  3. 3.
    D. L. M. Cansfield, G. Capaccio and I. M. Ward, Polym. Eng. Sci. 16 (1976) 721.CrossRefGoogle Scholar
  4. 4.
    P. D. Coates and I. M. Ward, J. Mater. Sci. 13 (1978) 1957.CrossRefGoogle Scholar
  5. 5.
    D. I. Wimpenny, Mater. Design 13(1) (1992) 29.CrossRefGoogle Scholar
  6. 6.
    N. E. Wrigley, Mater. Sci. Technol. 3 (1987) 161.CrossRefGoogle Scholar
  7. 7.
    F. J. Lockett, Mater. Design 13(2) (1992) 71.CrossRefGoogle Scholar
  8. 8.
    R. N. Haward, Polymer 28 (1987) 1485.CrossRefGoogle Scholar
  9. 9.
    C. G'sell and J. J. Jonas, J. Mater. Sci. 14 (1979) 583.CrossRefGoogle Scholar
  10. 10.
    C. G'sell, J. M. Hiver, A. Dahoun and A. Souahi, ibid.27 (1992) 5031.CrossRefGoogle Scholar
  11. 11.
    J. S. Sirkis and T. J. Lim, Exp. Mech. December (1991) 382.Google Scholar
  12. 12.
    D. N. Harvey, Proceedings IDDRG 13th Biennial Congress, February 20 1984, Melbourne, Australia, p. 403.Google Scholar
  13. 13.
    S. M. Metwalli, A. R. Ragab, A.H. Kamel and A. A. Sahab, IBM Kuwait Scientific Centre Report — KSC013, July 1985.Google Scholar
  14. 14.
    A. R. Ragab, S. M. Metwalli and J. Rueda, “Current advances in Mechanical Design and Production”, Third Cairo University MDP Conference, Cairo, 28–30 December 1985 (Pergamon Press).Google Scholar
  15. 15.
    S. M. Metwalli, A. R. Ragab, A. H. Kamel and A. Abdul Saheb, Exp. Mech. December (1987) 414.Google Scholar
  16. 16.
    V. J. Parks, Opt. Eng. 21 (1982) 633.CrossRefGoogle Scholar
  17. 17.
    J. S. Sirkis and C. E. Taylor, Exp. Mech. 30 (1990) 26.CrossRefGoogle Scholar
  18. 18.
    J. S. Sirkis, Opt. Eng. 29 (1990) 1485.CrossRefGoogle Scholar
  19. 19.
    A. R. Haynes and P. D. Coates, in “Proceedings of the Polymer Processing Society 9th Annual Meeting”, Manchester, UK (Polymer Processing Society; 1992) p. 418.Google Scholar
  20. 20.
    P. D. Coates, R. G. Speight and A. R. Haynes, Polymer 35 (1994) 3831.CrossRefGoogle Scholar
  21. 21.
    A. R. Haynes, PhD thesis, University of Bradford (1994).Google Scholar
  22. 22.
    A. Peterlin, J. Mater. Sci. 6 (1971) 490.CrossRefGoogle Scholar
  23. 23.
    G. Meinel and A. Peterlin, J. Polym. Sci. (A-2) 9 (1971) 67.Google Scholar
  24. 24.
    P. D. Coates and I. M. Ward, J. Mater. Sci. 15 (1980) 2897.CrossRefGoogle Scholar
  25. 25.
    S. Nazarenko, S. Bensason, A. Hiltner and E. Baer, Polymer 35 (1994) 3883.CrossRefGoogle Scholar
  26. 26.
    J. M. Allport, PhD thesis, University of Bradford (1994).Google Scholar
  27. 27.
    V. Noparatanakailas, PhD thesis, University of Bradford (1994).Google Scholar
  28. 28.
    S. M. Pourmahnaei, PhD thesis, University of Bradford (1989).Google Scholar
  29. 29.
    P. D. Coates, D. I. Ellis and S. M. Pourmahnaei, Plast. Rubb. Process. Applic. 8 (1987) 165.Google Scholar
  30. 30.
    A. J. Day, J. M. Allport, W. P. Fischer, P. D. Coates and A. Mimaroglu, in “Proceedings of the ABAQUS Users Conference”. Aachen (HKS, Rhode Island, 1993) pp. 151–64.Google Scholar
  31. 31.
    A. R. Haynes and P. D. Coates, in “Proceedings of the Polymer Processing Society, Regional Meeting, Strasbourg (Polymer Processing Society, 1994) p. 152.Google Scholar
  32. 32.
    P. D. Coates, PhD thesis, Department of Physics, University of Leeds (1976).Google Scholar

Copyright information

© Chapman & Hall 1996

Authors and Affiliations

  • A. R. Haynes
    • 1
  • P. D. Coates
    • 1
  1. 1.Interdisciplinary Research Centre for Polymer Science and Technology, Department of Mechanical and Manufacturing EngineeringUniversity of BradfordBradfordUK

Personalised recommendations