Journal of Materials Science

, Volume 31, Issue 7, pp 1767–1778 | Cite as

Electrodeposition of Ni and Co in low gravity

  • H. Abi-Akar
  • C. Riley
  • G. Maybee


Electrodeposition of Ni and Co metals under low gravity conditions was investigated, with emphasis on Ni. Custom designed experimental packages aboard sounding rockets were utilized for this purpose. Four missions were employed each providing 7 min of electrodeposition at ∼ 10−4 g. Several deposition conditions were studied including current density, electrolyte composition, substrate nature and deposition cell configuration. High current deposition, encompassing or exceeding 80 mAcm−2 produced Ni films in the nanocrystalline size range in a reduced gravity environment. Under the same conditions, Earth-produced deposits were crystalline and discontinuous. The convectionless deposition, achieved in low gravity, produced structural anomalies in Ni under specific conditions. Process efficiency and corrosion behaviour for the surfaces were also different in the two environments. The low gravity environment did not affect the electrochemical factors influencing Co deposition for the limited conditions we were able to study. No structural differences were observed between Co deposits in the two environments.


Limited Condition Corrosion Behaviour Substrate Nature Deposition Condition Gravity Condition 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    National Research Council, “Materials Science and Engineering for the 1990's” (National Academy Press, Washington, DC, 1989).Google Scholar
  2. 2.
    F. E. Luborsky (Ed.), “Amorphous Metallic Alloys” (Butterworth & Co Ltd., London, 1983) 1.CrossRefGoogle Scholar
  3. 3.
    R. Dagani, Chem. Eng. News 23 (1992) 18.Google Scholar
  4. 4.
    J. Masil, Met. Finish. 78 (1990) 480.Google Scholar
  5. 5.
    G. E. Rendon, (Ed.), “Materials Processing in the Reduced Gravity Environment of Space” (Elsevier Science Publishing Company, Inc., London, 1982).Google Scholar
  6. 6.
    G. A. Hazelrigg and J. M. Rynolds (Eds), “Opportunities for Academic Research in a Low Gravity Environment”, Vol. 108 (Progress in Astronautics and Aeronautics, 1986).Google Scholar
  7. 7.
    F. C. Wessling, C. A. Lunquist, G. W. Maybee, Acta Astronaut. 21 (1990) 647.CrossRefGoogle Scholar
  8. 8.
    C. Riley, H. Abi-Akar, B. Benson and G. Maybee, J. Spacecr. Rockets 27 (1990) 4.CrossRefGoogle Scholar
  9. 9.
    J. Ehrhardt, Galvanotecnik, 72 (1981) 13Google Scholar
  10. 10.
    Idem, Dispersion Electrolysis Under Zero Gravity Under SPACELAB Rocket Program TEXUS IV. Battele Institute, BMFT Reference No. QV 219-AK-AN/A-ALN 710 (April 1982).Google Scholar
  11. 11.
    Idem, TEXUS VII, BMFT Reference No. 01 QV 219-AK-AM/A-SLN 7910-5 (November 1983).Google Scholar
  12. 12.
    Idem, TEXUS IX, BMFT Reference No. 01 QV 014-AK/SN (November 1984).Google Scholar
  13. 13.
    H. Abi-Akar, Dissertation, “Electrodeposition in Low Gravity”, The University of Alabama in Huntsville, AL, USA (1992).Google Scholar
  14. 14.
    J. K. Dennis and T. E. Such, “Nickel and Chromium Plating” (Halsted Press Division John Wiley and Sons, Inc. 1972) 48.Google Scholar
  15. 15.
    H. J. S. Sand, Phil. Mag. 1 (1900) 45CrossRefGoogle Scholar
  16. 16.
    Idem,, Z. Physik. Chem. 35 (1900) 614.CrossRefGoogle Scholar
  17. 17.
    H. Feigenbaum and R. Weil, J. Electrochem. Soc. 126 (1979) 2085.CrossRefGoogle Scholar
  18. 18.
    W. Kim and R. Weil, Surf. Coat. Tech. 31 (1987) 143.CrossRefGoogle Scholar
  19. 19.
    G. C. Ye and D. N. Lee, Plat. Surf. Finish. 68 (1981) 60.Google Scholar
  20. 20.
    G. C. Ye and D. N. Lee, ibid.68 (1981) 46.Google Scholar
  21. 21.
    R. Weil and W. N. Wu, Plat. 60 (1973) 622.Google Scholar
  22. 22.
    H. J. Choi and R. Weil, Plat. Surf. Finish. 68 (1981) 110.Google Scholar
  23. 23.
    A. Taylor, “X-Ray Metallography” (John Wiley & Sons, Inc. New York, 1961).Google Scholar
  24. 24.
    C. G. Shull, Phys. Rev. 70 (1946).Google Scholar
  25. 25.
    A. R. Stokes, Proc. Phys. Soc. (London) 61 (1948) 382.CrossRefGoogle Scholar
  26. 26.
    B. E. Warren, Prog. Met. Phys. 8 (1959) 147.CrossRefGoogle Scholar
  27. 27.
    E. F. Bertaut, Comput. Rend. 228 (1949) 492.Google Scholar
  28. 28.
    B. E. Warren, Acta. Crystallogr. Camb. 8 (1955) 483.CrossRefGoogle Scholar
  29. 29.
    W. M. Mueller, J. P. Blackledge and G. G. Libowitz, “Metal Hydrides” (Academic Press, New York and London, 1968).Google Scholar
  30. 30.
    F. G. Cottrell, Z. Physik. Chem. 42 (1903) 385.Google Scholar
  31. 31.
    C. Riley, H. D. Coble, B. Loo, B. Benson, H. Abi-Akar and G. Maybee, Polym. Preprints 28 (1987) 470.Google Scholar

Copyright information

© Chapman & Hall 1996

Authors and Affiliations

  • H. Abi-Akar
    • 1
  • C. Riley
    • 1
  • G. Maybee
    • 2
  1. 1.Department of Chemistry and Materials ScienceThe University of Alabama in HuntsvilleHuntsvilleUSA
  2. 2.McDonnell Douglas Aerospace CompanyHuntsvilleUSA

Personalised recommendations