Advertisement

Journal of Materials Science

, Volume 31, Issue 7, pp 1681–1688 | Cite as

The influence of ageing on the stability of β-γ/γ′ derived microstructures in Ni-Al-Cr-(Co) alloys

  • W. F. Gale
  • R. V. Nemani
  • J. A. Horton
Article

Abstract

Multiphase Ni-Al-(Fe)-(Cr)-(Co)-based intermetallics with β(B2)-γ (A1)/γ′(L12), β-γ or β-γ′ microstructures can exhibit significant room-temperature tensile ductility. In the case of Ni-Al-Cr-based alloys, microstructural development is complicated by the precipitation of α-Cr, which can supplant the γ-phase during ageing of three-phase β-γ/γ′ microstructures. An investigation of the stability, during ageing, of cast Ni-Al-Cr-(Co) alloys with microstructures derived from β-γ/γ′ is reported. In the as-cast condition, the materials investigated consisted of a dendritic matrix containing L10 type martensite and interdendritic γ/γ′. Extensive intra- and interdendritic α-Cr precipitation was also observed. The stability during ageing of the interdendritic γ/γ′ microstructure is also considered and transformation of the L10 martensite is examined.

Keywords

Polymer Precipitation Microstructure Martensite Ductility 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    P. S. Khadkikar, K. Vedula and B. S. Shabel, MRS Symp. Proc. 81 (1987) 157.CrossRefGoogle Scholar
  2. 2.
    S. Guha, P. R. Munroe and I. Baker, ibid.133 (1989) 633.CrossRefGoogle Scholar
  3. 3.
    K. Ishida, R. Kainuma, N. Ueno and T. Nishizawa, Metall. Trans. 22A (1991) 441.CrossRefGoogle Scholar
  4. 4.
    R. D. Field, D. D. Krueger and S. C. Huang, MRS Symp. Proc. 133 (1989) 567.CrossRefGoogle Scholar
  5. 5.
    M. Larsen, A. Misra, S. Hartfield-Wunsch, R. D. Noebe and R. Gibala, ibid.194 (1990) 191.CrossRefGoogle Scholar
  6. 6.
    A. Misra, R. D. Noebe and R. Gibala, ibid.273 (1992) 205.CrossRefGoogle Scholar
  7. 7.
    Idem, ibid.,288 (1993) 483.CrossRefGoogle Scholar
  8. 8.
    R. Yang, J. A. Leake and R. W. Cahn, Philos. Mag. A 65 (1992) 961.CrossRefGoogle Scholar
  9. 9.
    G. Petzow and G. Effenberg (eds), “Ternary Alloys, A Comprehensive Compendium of Evaluated Constitutional Data and Phase Diagrams”, Vol. 4 (VCH, New York, 1991).Google Scholar
  10. 10.
    W. F. Gale, T. C. Totemeier and J. E. King, Microstruct. Sci. 21 (1994) 61.Google Scholar
  11. 11.
    Idem,, Metall. Mater. Trans. 26A (1995) 949.CrossRefGoogle Scholar
  12. 12.
    W. F. Gale and R. V. Nemani, Mater. Sci. Eng. A192/193 (1995) 868.CrossRefGoogle Scholar
  13. 13.
    C. C. Jia, K. Ishida and T. Nishizawa, Metall. Mater. Trans. 25A (1994) 473.CrossRefGoogle Scholar
  14. 14.
    R. Yang, J. A. Leake and R. W. Cahn, J. Mater. Res. 6 (1991) 343.CrossRefGoogle Scholar
  15. 15.
    J. H. Yang and C. M. Wayman, Intermetallics 2 (1994) 111.CrossRefGoogle Scholar

Copyright information

© Chapman & Hall 1996

Authors and Affiliations

  • W. F. Gale
    • 1
  • R. V. Nemani
    • 1
  • J. A. Horton
    • 2
  1. 1.Materials Research and Education CenterAuburn UniversityAuburnUSA
  2. 2.Metals and Ceramics DivisionOak Ridge National LaboratoryOak RidgeUSA

Personalised recommendations