Computational Mechanics

, Volume 12, Issue 5, pp 277–296 | Cite as

An analysis of strong discontinuities induced by strain-softening in rate-independent inelastic solids

  • J. C. Simo
  • J. Oliver
  • F. Armero


Ket qualitative features of solutions exhibiting strong discontinuities in rate-independent inelastic solids are identified and exploited in the design of a new class of finite element approximations. The analysis shows that the softening law must be re-interpreted in a distributional sense for the continuum solutions to make mathematical sense and provides a precise physical interpretation to the softening modulus. These results are verified by numerical simulations employing a regularized discontinuous finite element method which circumvent the strong mesh-dependence exhibited by conventional methods, without resorting to viscosity or introducing additional ad-hoc parameters. The analysis is extended to a new class of anisotropic rate-independent damage models for brittle materials.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Anzellotti, G.; Giaquinta, M. (1982): On the existence of the fields of stresses and displacements for an elasto-perfectly plastic body in static equilibrium. J. Math. Pures et Appliquées 61, 219–244Google Scholar
  2. Bazant, Z. P. (1986): Mechanics of distributed cracking. Appl. Mech. Res. 5, 675–705Google Scholar
  3. Bazant, Z. P.; Belytschko, T. (1985): Wave propagation in a strain-softening bar: exact solution. J. Eng. Mech. Div. ASCE. 111, 381–389Google Scholar
  4. Belytschko, T.; Fish, J.; Engelmann, B. E. (1988): A finite element with embedded localization zones. Comput. Meth. Appl. Mech. Eng. 70, 59–89Google Scholar
  5. Crisfield, M. A.; Wills, J. (1988): Solution strategies and softening materials. Comput. Meth. Appl. Mech. Eng. 66, 267–289Google Scholar
  6. De Borst, R. (1987): Computation of post-bifurcation and post-failure behavior of strain-softening solids. Comput. Struct. 2, 211–224Google Scholar
  7. Demengel, F. (1989): Compactness theorems of spaces of functions with bounded derivatives and applications to limit analysis problems in plasticity. Arch. Rat. Mech. Anal. 105, 123–161Google Scholar
  8. Duvaut, G.; Lions, J. L. (1976): Inequalities in mechanics and physics. Berlin, Heidelberg, New York: SpringerGoogle Scholar
  9. Hadamard, J. (1903): Lecons sur la Propagation des Ondes et les Equations de l'Hydrodynamique, Chap. VI. Paros: HermannGoogle Scholar
  10. Hill, R. (1950): The mathematical theory of plasticity. Oxford University PressGoogle Scholar
  11. Hill, R. (1962): Acceleration waves in solids. J. Mech. Phys. Solids 6, 1–10Google Scholar
  12. Hillerborg, A. (1985): Numerical methods to simulate softening and fracture of concrete. In: Sih, G. C.; DiTommaso, A. (eds): Fracture mechanics of contrete: structural application and numerical calculation, 141–170Google Scholar
  13. Hillerborg, A.; Modeer, M.; Petersson, P. (1976): Analysis of crack formation and crack growth in concrete by means fo fracture mechanics and finite elements. Cement and concrete research 6, 773–782Google Scholar
  14. Johnson, C. (1976): Existence theorems for plasticity problems. J. Math. Pures et Appliquées 55, 431–444Google Scholar
  15. Johnson, C. (1978): On plasticity with hardening. J. Math. Anal. Appl. 62, 325–336Google Scholar
  16. Johnson, C.; Hansbo, P. (1992): Adaptive finite element methods for small strain elastoplasticity. In: Proceedings IUTAM conference. Springer Verlag (in press)Google Scholar
  17. Johnson, W. (1987): Henri tresca as the originator of adiabatic heat lines. Intern. J. Mech. Sci. 29, 301–310Google Scholar
  18. Knowles, J. (1979): On the dissipation associated with weak shocks in finite elasticity. J. Elasticity 9, 131–158Google Scholar
  19. Katchanov, L. M. (1958): Time of the rupture process under creep conditions. IVZ Akad. Nauk S.S.R., Otd Tech Nauk 8, 26–31Google Scholar
  20. Koiter, W. T. (1966): General theorems for elastic-plastic solids. In: Progress in Solid Mechanics, Chapter IV, vol. 1, 67–221Google Scholar
  21. Kohn, R.; Temam, R. (1983): Dual spaces of stresses and strains, with applications to Hencky plasticity. Appl. Math. Optim. 10, 1–35.Google Scholar
  22. Lesaint, P. (1979): Sur les Systèmes Hyperboliques, Thèse d'EtatGoogle Scholar
  23. LeVeque, R. J. (1990): Numerical methods of conservation laws. Basel, Birkhauser VerlagGoogle Scholar
  24. Mandel, J. (1966): Conditions de Stabilité et Postulat de Drucker. In: Kravtchenko, J.; Sirieys, P. M. (eds): Rheology and soil mechanics, IUTAM Symposium Grenoble 1964, 58–68Google Scholar
  25. Matthies, H.; Strang, G.; Christiansen, E. (1979): The saddle point of a differential program. In: Glowinski, Robin, Zienkiewicz (eds). Energy methods in finite element analysis, 309–318. London: J. Wiley and SonsGoogle Scholar
  26. Matthies, H. (1979): Existence theorems in thermo-plasticity. J. Mec. 18, 695–712Google Scholar
  27. Needleman, A. (1987): Material rate dependent and mesh sensitivity in localization problems. Comp. Appl. Mech. Eng. 67, 68–85.Google Scholar
  28. Needleman, A.; Tvergard, V. (1992): Analysis of plastic localization in metals. Appl. Mech. Rev. 3–18Google Scholar
  29. Oliver, J. (1989): A consistent characteristic length for smeared cracking models. Int. J. Num. Meth. Eng. 28, 461–474.Google Scholar
  30. Ortiz, M.; Leroy, Y.; Needleman, A. (1987): A finite element method for localization failure analysis. Comp. Meth. Appl. Mech. Eng. 61, 189–214Google Scholar
  31. Ortiz, M. (1985): A constitutive theory for the inelastic behavior of concrete. Mech. Mat. 4, 67–93.Google Scholar
  32. Ortiz, M.; Quigley, J. J. (1991): Adaptive mesh refinement in strain localization. Com. Meth. Appl. Mech. Eng. 90, 781–804Google Scholar
  33. Ottosen, N. (1985): Thermodynamic consequences of Strain-softening in tension. J. Eng. Mech. Div. ASCE, 112, 1152–1164Google Scholar
  34. Pietrszczak, St.; Mróz (1981): Finite element analysis of deformation of strain-softening materials. Int. J. Num. Meth. Eng. 17, 327–334Google Scholar
  35. Pironneau, O. A. (1989): Finite element methods for fluids. John Wiley and SonsGoogle Scholar
  36. Prandtl, L. (1920): Ueber di Haerte plastischer Koerper. Goett. Nach., 74–84Google Scholar
  37. Prandtl, L. (1921): Ueber die Eindringungsfestigkeit plastischer Baustoffe und die Festigkeit von scneiden. Z. angew. Math. Mech. 1, 15–20Google Scholar
  38. Read, H. E.; Hegemier, G. A. (1984): Strain softening of rock, soil and concrete—a review article. Mech. Mat. 3, 271–294Google Scholar
  39. Reddy and Simo, J. C. (1992): Stability and convergence analysis of a class of assumed strain mixed methods. Num. Math. 3, 271–294.Google Scholar
  40. Simo, J. C.; Ju, J. W. (1984): A continuum strain based damage model. Part I: Formulation and Part II: Numerical algorithms. Int. J. Solids Struct. 23, 821–840 and 841–870Google Scholar
  41. Simo, J. C.; Rifai, M. S. (1990): A class of mixed assumed strain methods and the method of incompatible modes. Int. J. Num. Meth. Eng. 29, 1595–1638Google Scholar
  42. Simo, J. C.; Hughes, T. J. R. (1991): Plasticity, viscoplasticity and viscoelasticity: formulation and numerical analysis Aspects. Berlin, Heidelberg, New York: SpringerGoogle Scholar
  43. Strang, G.; Fix, G. (1972): An analysis of the finite element method. In: Energy methods in finite element analysis. Englewood Cliffs, New Jersey: Prentice-Hall, pp. 1595–1638Google Scholar
  44. Suquet, P. M. (1981): Sur les équations de la plasticité: existence et regularité des solutions. J. Mech. 20, 5–39Google Scholar
  45. Suquet, P. M. (1978): Existence and regularity of solutions for plasticity problems. In: Nemat-Nasser (ed): Variational methods in the mechanics of solids, 304–309Google Scholar
  46. Temam, R.; Strang, G. (1980): Functions of bounded deformation. Arch. Rational Mech. Anal. 75, 7–21Google Scholar
  47. Temam, R. (1986): A generalized Norton-Hoff model and the Prandtl-Reuss law of plasticity. Arch. Rational. Mech. Anal. 95, 137–183Google Scholar
  48. Thomas, T. Y. (1961): Plastic flow and fracture in solids, Academic PressGoogle Scholar
  49. Willam, K.; Sobh, N.; Sture (1987): Elastic-plastic tangent operators: localization study on the constitutive and finite element levels. In: Nakazawa, S.; William, K.; Robelo, N. (eds): Advances in inelastic analysis, AMD-Vol. 28, 107–126Google Scholar

Copyright information

© Springer-Verlag 1993

Authors and Affiliations

  • J. C. Simo
    • 1
    • 2
  • J. Oliver
    • 1
    • 2
  • F. Armero
    • 1
    • 2
  1. 1.Division of Applied MechanicsStanford UniversityUSA
  2. 2.ETS Ing. CCPUniversitat Politecnica de CatalunyaBarcelonaSpain

Personalised recommendations