Contributions to Mineralogy and Petrology

, Volume 47, Issue 2, pp 97–112 | Cite as

The petrology of chondrules in the Hallingeberg meteorite

  • Robert T. Dodd


Petrographic study of 124 chondrules in the Hallingeberg (L-3) chondrite and electron probe microanalyses of olivine and low-Ca pyroxene in 96 of them reveal patterns of variation like those encountered previously in Sharps (H-3). Chondrule mineralogy, mineral composition, and the incidence of shock-related textures vary systematically with chondrule type. This fact and evidence of recrystallization in at least a fourth of the chondrules studied indicate that the pre-accretion histories of chondrules included complex and overlapping episodes of magmatic crystallization, burial, metamorphism and exhumation, in which impact shock was heavily involved. Data for Hallingeberg and Sharps suggest that orthopyroxene accompanies or replaces clinoenstatite in some chondrules and that its presence is due, in part at least, to pre-accretion recrystallization. A comparison of modes for chondrules in Sharps and Hallingeberg shows the former to contain more olivine, on the average, than the latter. It appears that the mean compositions of chondrules in H- and L-group chondrites reflect bulk chemical differences between the two groups, and that chondrule formation followed the siderophile fractionation which differentiated H-, L- and LL-group ordinary chondrites.


Crystallization Recrystallization Fractionation Olivine Mineral Resource 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Bence, A., Albee, A.: Empirical correction factors for the electron microanalysis of silicates and oxides. J. Geol. 76, 382–403 (1968)Google Scholar
  2. Binns, R.: An exceptionally large chondrule in the Parnallee meteorite. Mining Mag. (Lond.) 36, 319–324 (1969)Google Scholar
  3. Boyd, F. R., England, J. L., Davis, B. T. C.: Effects of pressure on the melting and polymorphism of enstatite, MgSiO3. J. Geophys. Res. 69, 2101–2109 (1964)Google Scholar
  4. Carter, N. L., Raleigh, C., de Carli, P.: Deformation of olivine in stony meteorites. J. Geophys. Res. 73, 5439–5461 (1968)Google Scholar
  5. Dallwitz, W. B., Green, D. H., Thompson, D. E.: Clinoenstatite in a volcanic rock from the Cape Vogel area, Papua. J. Petrol. 7, 375–403 (1966)Google Scholar
  6. Dodd, R. T.: Recrystallized chondrules in the Sharps (H-3) chondrite. Geochim. Cosmochim. Acta 32, 1111–1120 (1968)Google Scholar
  7. Dodd, R. T.: Metamorphism of the ordinary chondrites: A review. Geochim. Cosmochim. Acta 33, 161–203 (1969)Google Scholar
  8. Dodd, R. T.: The petrology of chondrules in the Sharps meteorite. Contr. Mineral. and Petrol. 31, 201–227 (1971)Google Scholar
  9. Dodd, R. T.: The metal phase in unequilibrated ordinary chondrites and its implications for calculated accretion temperatures. Geochim. Cosmochim. Acta 38, 485–494 (1974)Google Scholar
  10. Dodd, R. T., Teleky, L. S.: Preferred orientation of olivine crystals in porphyritic chondrules. Icarus 6, 407–416 (1967)Google Scholar
  11. Dodd, R. T., Van Schmus, W. R.: Dark-zoned chondrules. Chem. Erde 30, 59–69 (1971)Google Scholar
  12. Dodd, R. T., Van Schmus, W. R., Koffman, D. M.: A survey of the uneqilibrated ordinary chondrites. Geochim. Cosmochim. Acta 31, 921–951 (1967)Google Scholar
  13. Dodd, R. T., Walter, L. S.: Chemical constraints on the origin of chondrules in ordinary chondrites. In: H. Reeves, ed., L'Origine du systeme solaire, p. 293–300. Paris: C.N.R.S. 1972Google Scholar
  14. Fredriksson, K.: Chondrules and the meteorite parent bodies. Trans. N.Y. Acad. Sci., Ser. 11, 25, 756–769 (1963)Google Scholar
  15. Fredriksson, K.: The Sharps chondrite: new evidence on the origin of chondrules and chondrites. In: P. M. Millman, ed., Meteorite research, p. 155–165. Dordrecht: Reidel 1969Google Scholar
  16. Fredriksson, K., Nelen, J., Fredriksson, B. J.: The LL-group chondrites. In: L. Ahrens, ed., Origin and distribution of the elements, p. 457–466. Oxford: Pergamon Press 1968Google Scholar
  17. French, B. M., Hartung, J., Short, N., Dietz, R.: Tenoumer crater, Mauretania. J. Geophys. Res. 75, 4396–4406 (1970)Google Scholar
  18. Keil, K., Fredriksson, K.: The iron, magnesium, and calcium contents of coexisting olivines and rhombic pyroxenes of chondrites. J. Geophys. Res. 69, 3487–3515 (1964)Google Scholar
  19. Kurat, G.: Zur Entstehung der Chondren. Geochim. Cosmochim. Acta 31, 491–502 (1967)Google Scholar
  20. Larimer, J. W., Anders, E.: Chemical fractionations in meteorites, 3, major element fractionations in chondrites. Geochim. Cosmochim. Acta 34, 367–388 (1970)Google Scholar
  21. Mason, B.: Olivine composition in chondrites. Geochim. Cosmochim. Acta 27, 1011–1024 (1963)Google Scholar
  22. Mason, B., Wiik, H. B.: The amphoterites and meteorites of similar composition. Geochim. Cosmochim. Acta 28, 533–538 (1964)Google Scholar
  23. Onuma, N., Clayton, R. N., Mayeda, T.: Oxygen isotope cosmothermometer. Geochim. Cosmochim. Acta 36, 169–188 (1972)Google Scholar
  24. Osborn, T. W., Smith, R. H., Schmitt, R. A.: Elemental composition of individual chondrules from ordinary chondrites. Geochim. Cosmochim. Acta 37, 1909–1942 (1973)Google Scholar
  25. Pollack, S.: Disordered pyroxene in chondrites. Geochim. Cosmochim. Acta 32, 1209–1217 (1968)Google Scholar
  26. Ringwood, A. E.: Genesis of chondritic meteorites. Rev. Geophys. 4, 113–175 (1966)Google Scholar
  27. Van Schmus, W. R.: Polymict structure of the Mezö-Madaras chondrite. Geochim. Cosmochim. Acta 31, 2027–2042 (1967)Google Scholar
  28. Van Schmus, W. R., Wood, J. A.: A chemical-petrologic classification for the chondritic meteorites. Geochim. Cosmochim. Acta 31, 747–765 (1967)Google Scholar
  29. Walter, L. S., Dodd, R. T.: Evidence for vapor fractionation in the origin of chondrules. Meteoritics 7, 341–352 (1972)Google Scholar
  30. Walter, L. S., Dodd, R. T., Smidinger, P.: Sampling model of chondrule compositional variations (abs.). Program 36th Annual Meeting Meteoritical Society, Davos, 151–152Google Scholar
  31. Wlotzka, F.: On the formation of chondrules and metal particles by “shock melting”. In: P. M. Millman, ed., Meteorite research, p. 174–184. Dordrecht: Reidel 1969Google Scholar

Copyright information

© Springer-Verlag 1974

Authors and Affiliations

  • Robert T. Dodd
    • 1
  1. 1.Max-Planck-Institut für KernphysikHeidelbergB.R.D.

Personalised recommendations