Contributions to Mineralogy and Petrology

, Volume 18, Issue 2, pp 105–162 | Cite as

Genesis of the calc-alkaline igneous rock suite

  • Trevor H. Green
  • A. E. Ringwood


A high pressure experimental study of the partial melting fields of synthetic high-alumina olivine tholeiite, high-alumina quartz tholeiite, basaltic andesite, andesite, dacite and rhyodacite under dry and wet \(\left( {P_{{\text{H}}_{\text{2}} {\text{O}}} < P_{{\text{LOAD }}} } \right)\) conditions has been conducted in order to investigate possible origins of the calc-alkaline series from the upper mantle. Detailed analyses of crystallizing phases using the electron microprobe has enabled calculation of the liquid line of descent in these compositions at various pressures.

At 27–36 kb garnet and clinopyroxene are the liquidus or near-liquidus phases in dry tholeiite, basaltic andesite and andesite, while quartz is the liquidus phases in dry dacite and rhyodacite. Under wet conditions at 27 kb garnet, not quartz, is the liquidus phase in the dacite. Qualitatively these results show that the low melting fraction of a quartz eclogite at 27–36 kb under dry conditions is of andesitic composition whereas under wet conditions it is rhyodacitic or granodioritic. At these pressures under dry conditions the andesite liquidus lies in a marked low temperature trough between the more basic and more acid compositions. Quantitatively, the calculated compositions of liquid fractionates for varying degrees of melting of the quartz eclogite bulk composition broadly follow the calc-alkaline trend.

At 9–10 kb under wet conditions \(\left( {P_{{\text{H}}_{\text{2}} {\text{O}}} < P_{{\text{LOAD }}} } \right)\) sub-silicic amphibole and pyroxenes are the near-liquidus phases in tholeiite and basaltic andesite compositions. Calcic plagioclase and garnet occur nearer the solidus. The calculated liquid fractionates follow the calc-alkaline trend and demonstrate that the calc-alkaline series may be derived by the partial melting of amphibolite at lower crustal depths under wet conditions \(\left( {P_{{\text{H}}_{\text{2}} {\text{O}}} < P_{{\text{LOAD }}} } \right)\), Or by the fractional crystallization of a hydrous basalt magma at similar depths.

These experimental results support two complementary hypotheses for the derivation of the calc-alkaline igneous rock suite from the mantle by a two stage igneous process. In the first stage of both hypotheses large piles of basalt are extruded on the earth's surface. Subsequently this pile of basalt may, under dry conditions, transform to quartz eclogite, sink into the mantle and finally undergo partial melting at 100–150 kms depth. This partial melting gives rise to the calc-alkaline magma series leaving a residuum of clinopyroxene and garnet. Alternatively, if wet conditions prevail in the basalt pile and the geotherms remain high, partial melting of the basalt may take place near the base of the pile, at about 10 kb pressure \(\left( {P_{{\text{H}}_{\text{2}} {\text{O}}} < P_{{\text{LOAD }}} } \right)\). The liquids so formed constitute the calc-alkaline suite and the residuum consists of amphibole, pyroxenes and possibly minor garnet and calcic plagioclase. Both models may be directly linked to the hypothesis of sea-floor spreading.


Olivine Partial Melting Basaltic Andesite Calcic Plagioclase Olivine Tholeiite 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Akimoto, S.: Thermo-magnetic study of ferromagnetic minerals contained in igneous rocks. J. Geomag. Geoelect. 6, 1–14 (1954).Google Scholar
  2. —: Magnetic properties of ferromagnetic minerals contained in igneous rocks. Jap. J. Geophys. 1, 1–31 (1955).Google Scholar
  3. Anderson, C. A.: Volcanoes of the Medicine Lake Highland, California. Calif. Univ., Dept. Geol. Sci. Bull. 25, 347–422 (1941).Google Scholar
  4. Aoki, K.: On hornblende from Ammadaki, Iki Islands, Northern Kyushu, Japan. J. Japan. Assoc. Mineralogists, Petrologists, Geologists 45, 115–119 (1961).Google Scholar
  5. Bowen, N. L.: The evolution of igneous rocks. Princeton: Univ. Press 1928.Google Scholar
  6. Boyd, F. R., and J. L. England: Apparatus for phase-equilibrium measurements at pressures up to 50 kb and temperatures up to 1750° C. J. Geophys. Research 65, 741–748 (1960).Google Scholar
  7. —: Effect of pressure on the melting point of diopside, CaMgSi2O6 and albite NaAlSi3O8 in the range up to 50 kb. J. Geophys. Research 68, 311–323 (1963).Google Scholar
  8. Branch, C. D.: Genesis of magma for acid calc-alkaline volcano-plutonic formations. Tectonophysics 4, 83–100 (1967).Google Scholar
  9. Buddington, A. F.: The origin of anorthosite re-evaluated. Records Geol. Survey India 86, 421–432 (1961).Google Scholar
  10. Byers Jr., F. M.: Petrology of three volcanic suites, Umnak and Bogoslof Islands, Aleutian Islands, Alaska. Bull. Geol. Soc. 72, 93–128 (1961).Google Scholar
  11. Carmichael, I. S. E.: The petrology of Thingmuli, a Tertiary volcano in eastern Iceland. J. Petrology 5, 435–460 (1964).Google Scholar
  12. —: The iron-titanium oxides of salic volcanic rocks and their associated ferromagnesian silicates. Contr. Mineral. and Petrol. 14, 36–64 (1967).Google Scholar
  13. Clark, R. H.: Petrology of the volcanic rocks of Tongariro sub-division. Bull. New Zealand Geol. Surv. 40, Appendix 2, 107–123 (1960).Google Scholar
  14. Coats, R. R.: Magmatic differentiation in Tertiary and Quaternary volcanic rocks from Adak and Kanaga Islands, Aleutian Islands, Alaska. Bull. Geol. Soc. Amer. 63, 485–514 (1952).Google Scholar
  15. —: Magma type and crustal structure in the Aleutian Arc, in Crust of the Pacific Basin. Geophys. Mon. 6, 92–109 (1962).Google Scholar
  16. - Geologic reconnaissance of Semisopochnoi Island, Western Aleutian Islands, Alaska. U.S. Geol. Survey, Bull. 1028-0 (1959).Google Scholar
  17. Coombs, H. A.: Mt. Baker, a Cascade volcano. Bull. Geol. Soc. Am. 50, 1493–1510 (1939).Google Scholar
  18. Cox, P. T.: Geology of the Rakaia gorge district. Trans. Proc. New Zealand Inst. 56, 91–111 (1926).Google Scholar
  19. Daly, R. A.: Igneous rocks and the depths of the earth. New York: McGraw-Hill Book Co. Inc. 1933.Google Scholar
  20. Deer, W. A.: The composition and paragenesis of the hornblendes of the Glen Tilt Complex, Perthshire. Mineral. Mag. 25, 56–74 (1938).Google Scholar
  21. Dickinson, W. R.: Circum-Pacific andesite types. Abst. Trans. Am. Geophys. Union 48, 253 (1967).Google Scholar
  22. Doe, B. D.: The bearing of lead isotopes on the source of granitic magma. J. Petrology 8, 51–83 (1967).Google Scholar
  23. Drewes, H., G. D. Fraser, G. L. Snyder, and H. F. Barnett jr.: Geology of Unalaska Island and adjacent insular shelf, Aleutian Islands, Alaska. U.S. Geol. Surv., Bull. 1028-S (1961).Google Scholar
  24. Edwards, A. B.: On the occurrence of almandine garnets in some Devonian igneous rocks of Victoria. Proc. Roy. Soc. Victoria 49, 40–50 (1936).Google Scholar
  25. Engel, A. E. J.: Geologic evolution of North America. Science 140, 143–152 (1963).Google Scholar
  26. —, C. G. Engel and R. G. Havens: Chemical characteristics of oceanic basalts and the upper mantle. Bull. Geol. Soc. Am. 76, 719–734 (1965).Google Scholar
  27. Engel, C. G., R. L. Fisher and A. E. J. Engel: Igneous rocks of the Indian Ocean floor. Science 150, 605–610 (1965).Google Scholar
  28. Ewart, A.: Mineralogy and petrology of the Whakamaru Ignimbrite in the Maraetai area of the Taupo Volcanic Zone, New Zealand. New Zealand J. Geol. Geophys. 8, 611–677 (1965).Google Scholar
  29. -, and J. J. Stipp: Origin of the volcanic rocks of the Central North Island, New Zealand, as indicated by a study of Sr87/Sr86 ratios and Sr, Rb, K, U and Th abundances. Geochim. et Cosmochim. Acta (1967, in press).Google Scholar
  30. Faure, G., and P. M. Hurley: The isotopic composition of strontium in oceanic and continental basalts: application to the origin of igneous rocks. J. Petrology 4, 31–50 (1963).Google Scholar
  31. Gast, P. W.: Limitations on the composition of the upper mantle. J. Geophys. Research 65, 1287–1297 (1960).Google Scholar
  32. Gorshkov, G. S.: Petrochemical features of volcanism in relation to the types of the earth's crust, in “Crust of the Pacific Basin”. Geophys. Mon. 6, 110–115 (1962).Google Scholar
  33. Green, D. H., and I. B. Lambert: Experimental crystallization of anhydrous granite at high pressures and temperatures. J. Geophys. Research 70, 5259–5268 (1965).Google Scholar
  34. —, and A. E. Ringwood: An experimental investigation of the gabbro to eclogite transformation and its petrological applications. Geochim. et Cosmochim. Acta 31, 767–833 (1967a).Google Scholar
  35. —: The genesis of basalt magmas. Contr. Mineral. and Petrol. 15, 103–190 (1967b).Google Scholar
  36. Green, T. H.: High pressure experiments on the genesis of anorthosites, in “Petrology of the upper mantle”. Aust. Nat. Univ. Dept. Geophys. and Geochem., Publ. 444 (1966).Google Scholar
  37. - High pressure experimental investigations on the origin of high-alumina basalt, andesite and anorthosite, Unpubl. Ph. D. Thesis, Aust. Nat. Univ. (1967a).Google Scholar
  38. - Experimental fractional crystallization of quartz diorite and its application to the problem of anorthosite origin. In: Symposium on “Origin of Anorthosite” (ed. Y. Isachsen) (in press, 1967b).Google Scholar
  39. - High pressure experimental study of the origin of anorthosite. In preparation (1968).Google Scholar
  40. —, D. H. Green and A. E. Ringwood: The origin of high-alumina basalts and their relationships to quartz tholeiites and alkali basalts. Earth and Planetary Sci. Letters 2, 41–51 (1967).Google Scholar
  41. —, and A. E. Ringwood: Origin of the calc-alkaline igneous rock suite. Earth and Planetary Sci. Letters 1, 307–316 (1966).Google Scholar
  42. —: Origin of garnet phenocrysts in calc-alkaline rocks. Contr. Mineral. and Petrol. 18, 163–174 (1968).Google Scholar
  43. —, and A. Major: Friction effects and pressure calibration in a piston-cylinder apparatus at high pressure and temperature. J. Geophys. Research 71, 3589–3594 (1966).Google Scholar
  44. Hamilton, W.: Origin of high-alumina basalt, andesite and dacite magmas. Science 146, 635–637 (1964).Google Scholar
  45. Hess, H. H.: The Stillwater Igneous Complex, Montana. Geol. Soc. Am. Mem. 80 (1960).Google Scholar
  46. Holmes, A.: The origin of igneous rocks. Geol. Mag. 69, 543–558 (1932).Google Scholar
  47. Hurley, P. M., P. C. Bateman, H. W. Fairbairn, and W. H. Pinson Jr.: Investigation of initial Sr87/Sr86 ratios of the Sierra Nevada plutonic province. Bull. Geol. Soc. Am. 76, 165–174 (1965).Google Scholar
  48. Irvine, T. N.: Origin of the ultramafic complex at Duke Island, southeast Alaska. Min. Soc. Am., Spec. Pap. 1, 36–45 (1963).Google Scholar
  49. Joplin, G. A.: A petrography of Australian igneous rocks. Sydney: Angus and Robertson 1965.Google Scholar
  50. Kosminskaya, I. P., S. M. Zverev, P. S. Veitsman, Yu. V. Tulina and R. M. Krakshina: Basic features of the crustal structure of the Sea of Okhotsk and the Kurile-Kamchatka zone of the Pacific Ocean from deep seismic sounding data. Bull. Acad. Sci. U.S.S.R., Geophys. Ser. (Eng. Transi.), 11–27 (1963).Google Scholar
  51. Kuno, H.: Petrology of the Hakone Volcano and adjacent areas, Japan. Bull. Geol. Soc. Am. 61, 957–1020 (1950).Google Scholar
  52. —: High-alumina basalt. J. Petrology 1, 121–145 (1960).Google Scholar
  53. —: Some problems of calc-alkali rock series, Japan. J. Japan. Assoc. Mineralogists, Petrologists Econ. Geologists 53, 131–142 (1965).Google Scholar
  54. Larsen, E. S., and W. Draisin: Composition of the minerals in the rocks of the Southern Californian Batholith, Rept. 18th Sess. Internat. Geol. Congr. 1948, 2, 66–79 (1948).Google Scholar
  55. —, J. Irving, and F. A. Gonyer: Petrologic results of a study of the minerals from the Tertiary volcanic rocks of the San Juan region, Colorado. Am. Mineralogist 21, 679–701 (1936).Google Scholar
  56. —: Petrologic results of a study of the minerals from the Tertiary volcanic rocks of the San Juan region, Colorado. Am. Mineralogist 23, 417–429 (1938).Google Scholar
  57. Lidiak, E. G.: Petrology of andesitic, spilitic and keratophyric flow rock, north-central Puerto Rico. Bull. Geol. Soc. 76, 57–88 (1965).Google Scholar
  58. Lipman, P. W.: Mineralogy and paragenesis of amphibole from Gibson Peak Pluton, Northern California. Am. Mineralogist 49, 1321–1330 (1964).Google Scholar
  59. Macdonald, G. A., and T. Katsura: Chemical composition of Hawaiian lavas. J. Petrology 5, 82–133 (1964).Google Scholar
  60. —: Eruption of Lassen Peak, Cascade Range, California in 1915: example of mixed magmas. Bull. Geol. Soc. Am. 76, 475–482 (1965).Google Scholar
  61. Makarov, N. N., and V. A. Suprychev: Xenogenic garnet (pyrope-almandine) from volcanic rocks of the Crimea. Doklady Akad. Nauk S.S.R. (Eng. Transi.) 157, 64–67 (1964).Google Scholar
  62. Miyashiro, A.: Pyralspite garnets in volcanic rocks. J. Geol. Soc. Japan 61, 463–470 (1955).Google Scholar
  63. Nockolds, S. R.: The production of normal rock types by contamination and their bearing on petrogenesis. Geol. Mag. 71, 31–39 (1934).Google Scholar
  64. —, and R. Allen: The geochemistry of some igneous rock series. Geochim. et Cosmochim. Acta 4, 105–142 (1953).Google Scholar
  65. O'Hara, M. J.: Melting of garnet peridotite at 30 kilobars. Carnegie Inst. Wash. Year Book 62, 71–76 (1963a).Google Scholar
  66. —: Melting of bimineralic eclogite at 30 kilobars. Carnegie Inst. Wash. Year Book 62, 76–77 (1963b).Google Scholar
  67. —: Primary magmas and the origin of basalts. Scot. J. Geol. 1, 19–40 (1965).Google Scholar
  68. Oliver, R. L.: The origin of garnets in the Borrowdale Volcanic Series and associated rocks, English Lake District. Geol. Mag. 93, 121–139 (1956).Google Scholar
  69. Osborn, E. F.: Role of oxygen pressure in the crystallization and differentiation of basaltic magma. Am. J. Sic. 257, 609–647 (1959).Google Scholar
  70. —: Reaction series for sub-alkaline igneous rocks based on different oxygen pressure conditions. Am. Mineralogist 47, 211–226 (1962).Google Scholar
  71. Poldervaart, A.: Three methods of graphic representation of chemical analyses of igeneous rocks. Trans. Roy. Soc. S. Africa 32, 177–188 (1949).Google Scholar
  72. —, and W. Elston: The calc-alkaline series and the trend of fractional crystallization of basaltic magma. A new approach at graphical representation. J. Geol. 62, 150–162 (1954).Google Scholar
  73. Ringwood, A. E.: Geology of the Deddick-Wulgulmerang area, East Gippsland. Proc. Roy. Soc. Victoria 67, 19–66 (1955).Google Scholar
  74. —: The chemical composition and origin of the earth. In: Advances in Earth Sciences (ed. P. M. Hurley), pp. 287–356. Cambridge, Mass: M.I.T. Press 1966.Google Scholar
  75. —, and D. H. Green: An experimental investigation of the gabbro-eclogite transformation and some geophysical implications. Tectonophysics 3, 383–427 (1966).Google Scholar
  76. Rubey, W. W.: Geologic history of sea water. Bull. Geol. Soc. Am. 62, 1111–1147 (1951).Google Scholar
  77. - Development of the hydrosphere and atmosphere with special reference to the probable composition of the early atmosphere. In: Crust of the Earth (ed. A. Poldervaart). Geol. Soc. Am., Spec. Papers 62, 631–650 (1955).Google Scholar
  78. Ruckmick, J. C., and J. A. Noble: Origin of the ultramafic complex at Union Bay, south-eastern Alaska. Bull. Geol. Soc. Am. 70, 981–1018 (1959).Google Scholar
  79. Schmidt, R. G.: Petrology of the volcanic rocks, Saipan, Mariana Islands. U.S. Geol. Survey, Profess. Papers 280, 127–176 (1957).Google Scholar
  80. Shor Jr., G. G.: Structure of the Bering Sea and the Aleutian Ridge. Marine Geol. 1, 213–219 (1964).Google Scholar
  81. Snyder, G. L.: Geology of Little Sitkin Island, Alaska. U.S. Geol. Survey, Bull. 1028-H (1959).Google Scholar
  82. Taylor Jr., H. P., and J. A. Noble: Origin of the ultramafic complexes in south-eastern Alaska. Rept. 21st Sess. Internat. Geol. Congr. 13, 175–187 (1960).Google Scholar
  83. Taylor, S. R., and A. J. R. White: Geochemistry of andesites and the growth of continents. Nature 208, 271–273 (1965).Google Scholar
  84. —: Trace element abundances in andesites. Bull. volcanol. 29, 177–194 (1966).Google Scholar
  85. Thayer, T. P.: Petrology of later Tertiary and Quaternary rocks of the north central Cascade Mountains in Oregon. Bull. Geol. Soc. Am. 48, 1611–1652 (1937).Google Scholar
  86. Tilley, C. E.: Some aspects of magmatic evolution. Quart. J. Geol. Soc. London 106, 37–61 (1950).Google Scholar
  87. Turner, F. J., and J. Verhoogen: Igneous and metamorphic petrology. New York: McGraw-Hill Book Co. 1960.Google Scholar
  88. Tuttle, O. F., and N. L. Bowen: Origin of granite in the light of experimental studies in the system NaAlSi3O8-KAlSi3O8-SiO2-H2O. Geol. Soc. Am., Mem. 74 (1958).Google Scholar
  89. Verhoogen, J.: Mount St. Helens, a Recent Cascade volcano. Calif. Univ. Dept. Geol. Sci., Bull. 24, 263–302 (1937).Google Scholar
  90. Wager, L. R.: The major element variation of the layered series of the Skaergaard intrusion and a re-estimation of the average composition of the hidden layered series and of the successive residual magmas. J. Petrology 1, 364–398 (1960).Google Scholar
  91. —, and R. L. Mitchell: The distribution of trace elements during strong fractionation of basic magma: a further study of the Skaergaard intrusion, East Greenland. Geochim. et Cosmochim. Acta 1, 129–208 (1951).Google Scholar
  92. Waters, A. C.: Volcanic rocks and the tectonic cycle. In: Crust of the Earth (ed. A. Poldervaart). Geol. Soc. Am., Spec. Papers 62, 703–722 (1955).Google Scholar
  93. Wilcox, R. E.: Petrology of Paricutin Volcano, Mexico. U.S. Geol. Survey, Bull. 965-C (1954).Google Scholar
  94. Wilkinson, J. F. G.: Some aspects of calc-alkali rock genesis. J. Proc. Roy. Soc. N.S. Wales 99, 69–77 (1966).Google Scholar
  95. —, R. H. Vernon and S. E. Shaw: The petrology of an adamellite-porphyrite from the New England Bathylith (New South Wales). J. Petrology 5, 461–488 (1964).Google Scholar
  96. Williams, H.: Geology of the Lassen Volcanic National Park, California. Calif. Univ., Dept. Geol. Sci., Bull. 21, 195–385 (1932).Google Scholar
  97. —: Mt. Shasta, California. Zeit. Vulk. 15, 225–253 (1934).Google Scholar
  98. —: Newberry Volcano of Central Oregon. Bull. Geol. Soc. Am. 4–6, 253–304 (1935).Google Scholar
  99. - The geology of Crater Lake National Park, Oregon. Carnegie Inst. Wash. Publ. 540 (1942).Google Scholar
  100. - Volcanoes of the Paricutin Region, Mexico. U.S. Geol. Survey, Bull. 965B (1950).Google Scholar
  101. —, F. J. Turner and C. M. Gilbert: Petrography. San Francisco: W. H. Freeman and Co. 1958.Google Scholar
  102. Wilson, J. T.: The development and structure of the crust. In: The Earth as a Planet (ed. G. P. Kuiper), pp. 138–214. Chicago: Univ. Chicago Press 1954.Google Scholar
  103. Yoder Jr., H. S.: Experimental studies bearing on anorthosites. Abst. in Symposium: Origin of Anorthosite (ed. Y. Isachsen), p. 22. Plattsburgh, New York: State Univ. N.Y. 1966.Google Scholar
  104. —, and C. E. Tilley: Origin of basalt magmas: an experimental study of natural and synthetic rock systems. J. Petrology 3, 342–532 (1962).Google Scholar

Copyright information

© Springer-Verlag 1968

Authors and Affiliations

  • Trevor H. Green
    • 1
    • 2
  • A. E. Ringwood
    • 1
  1. 1.Department of Geophysics and GeochemistryAustralian National UniversityCanberraAustralia
  2. 2.Hoffman LaboratoryHarvard UniversityCambridgeUSA

Personalised recommendations