Contributions to Mineralogy and Petrology

, Volume 68, Issue 3, pp 231–241 | Cite as

A petrographie study of the process of serpentinisation in ophiolites and the ocean crust

  • H. M. Prichard


The process of serpentinisation is illustrated by 17 samples showing different degrees of serpentinisation chosen from a large number of peridotites and serpentinites from the ocean floor and from ophiolite complexes. Observations of textural relationships were made by optical and scanning electron microscope. Mineral identification was confirmed by X-ray diffraction.

Of the serpentine polymorphs, lizardite forms during early stages of serpentinisation and displays a characteristically platy morphology. Olivine and pyroxene are replaced by lizardite until no olivine remains. At this stage chrysotile begins to crystallise as fine fibres characteristically filling veins and actually replacing lizardite throughout the rock. Antigorite is confined to sheared surfaces and is rare in the ocean floor forming the latest polymorph. Both ocean floor and ophiolite samples show well developed mesh textures in hand specimen, while a much smaller web network of serpentine occurs on some ocean floor samples. Serpentines from ophiolites show two morphological types of lizardite which may have formed at different temperatures.


Olivine Serpentine Chrysotile Ocean Floor Antigorite 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Aumento, F., Loubat, H.: The Mid-Atlantic ridge near 45 ° N XVI: Serpentinised ultramafic intrusions. Can. J. Earth Sci. 18, 631–663 (1971)Google Scholar
  2. Barnes, I., Rapp, J.B., James, R., O'Neal, J.R.: Metamorphic assemblages and the flow of metamorphic fluids in four instances of serpentinisation. Contrib. Mineral. Petrol. 35, 243–276 (1972)CrossRefGoogle Scholar
  3. Bonatti, E.: Ultramafic rocks from the Mid-Atlantic Ridge near 45 ° N. Nature 219, 363–364 (1968)CrossRefGoogle Scholar
  4. Boudier, F.: Mineraux serpentineux extraits de peridotites serpentinisees des Alps Occudentales. Contrib. Mineral. Petrol. 33, 331–345 (1971)CrossRefGoogle Scholar
  5. Cann, J.R.: Petrology of basement rocks from rocks from Palmer Ridge, N.E. Atlantic. Phil. Trans. Roy. Soc. London 268, 605–618 (1971)Google Scholar
  6. Challis, G.A.: The origin of New Zealand ultramafic intrusions. J. Petrol. 6, 322–364 (1965)Google Scholar
  7. Christensen, N.I.: The abundance of serpentines in the oceanic crust. J. Geol. 80, No. 6, 709–719 (1972)CrossRefGoogle Scholar
  8. Coleman, R.G.: Petrology and geophysical nature of serpentinites. Bull. Geol. Soc. Am. 82, 897–918 (1971)Google Scholar
  9. Cressey, B.A., Zussman, J.: Electron microscope studies of serpentinites. Can. Mineral. 14, 307–313 (1976)Google Scholar
  10. Davies, H.L.: Peridotite, Gabbro-Basalt complex in Papua New Guinea. Bull. Bir. Mineral. Res. Geol. Geophys. Aust. 128, 1–47 (1971)Google Scholar
  11. Deer, W.A., Howie, R.A., Zussman, J.: Rock forming minerals. 3, Sheet silicates 170–190 Longmans 1961Google Scholar
  12. Evans, B.W., Johannes, W., Oterdoom, H., Trommsdorff, V.: Stability of chrysotile and antigorite in the serpentinite Multisystem. Schweiz. Mineral. Petrogr. Mitt. 56, 79–93 (1976)Google Scholar
  13. Gass, I.G.: The ultramafic/volcanic assemblages of the Troodos Massif, Cyprus. In: Ultramafic and related rocks (P.J. Wyllie, ed.), pp. 121–134, New York: Wiley 1967Google Scholar
  14. Jackson, E.D.: Primary textures and mineral associations in the ultramafic zone of the still water complex, Montana, U.S. Geol. Surv. Prof. Paper 358, 1–106 (1961)Google Scholar
  15. Jackson, E.D., Green, H.W. II., Moores, E.M.: The Vourinos ophiolite Greece. Geol. Soc. Am. Bull. 86, 390–398 (1975)CrossRefGoogle Scholar
  16. Krstanovic, I.: Crystal structure of single layer lizardite. Z. Krist. 126, 163–169 (1968)CrossRefGoogle Scholar
  17. Maltman, A.J.: Serpentine textures in Anglesey, North Wales, United Kingdom. Geol. Soc. Am. Bull. 89, 972–980 (1978)CrossRefGoogle Scholar
  18. Moody, J.B.: Serpentinisation: a review. Lithos 9, 125–138 (1976)CrossRefGoogle Scholar
  19. Moody, J.B.: An experimental study on the serpentinisation of iron bearing olivines. Can. Mineral. 14, 462–478 (1976)Google Scholar
  20. Moores, V., MacGregor, I.D.: Types of Alpine ultramafic rocks and their implications for fossil plate interactions. Geol. Soc. Am. Mem. 132, 209–223 (1972)Google Scholar
  21. Ohnenstetter, D., Ohnenstetter, M.: Le puzzle ophiolitique Corse. Thesis (1975)Google Scholar
  22. Shido, F., Miyashiro, A., Ewing, M.: Basalts and serpentinite from the Puerto Rico Trench. Marine Geol. 16, 191–203 (1974)Google Scholar
  23. Smith, C.H.: Bay of Islands Igneous complex, western Newfoundland. Geol. Surv. Can. Mem. 290, 1–132 (1958)Google Scholar
  24. Whittaker, E.J.W., Wicks, F.J.: Chemical differences among the serpentine polymorphs: a discussion. Am. Mineral. 55, 1025–1047 (1970)Google Scholar
  25. Whittaker, E.J.W., Zussman, J.: The characterisation of serpentine minerals by X-ray diffraction. Mineral. Mag. 31, 107–126 (1956)Google Scholar
  26. Wicks, F.J., Whittaker, E.J.W.: A reappraisal of the structures of the serpentine minerals. Can. Mineral. 13, 227–243 (1975)Google Scholar
  27. Wicks, F.J., Whittaker, E.J.W.: Serpentine textures and serpenti nisation. Can. Mineral. 15, 459–488 (1977)Google Scholar
  28. Wicks, F.J., Zussman, J.: Microbeam X-ray diffraction patterns of the serpentine minerals. Can. Mineral. 13, 244–258 (1975)Google Scholar

Copyright information

© Springer-Verlag 1979

Authors and Affiliations

  • H. M. Prichard
    • 1
  1. 1.Geology DepartmentThe UniversityNewcastle upon TyneGreat Britain

Personalised recommendations