Contributions to Mineralogy and Petrology

, Volume 42, Issue 2, pp 109–124 | Cite as

Garnet-orthopyroxene and orthopyroxene-clinopyroxene relationships in simple and complex systems

  • Bernard J. Wood
  • Shohei Banno


Use of simple mixing models of orthopyroxene and garnet solid solutions enables extrapolation of experimentally determined equilibria in the MgSiO3-Al2O3 system to uninvestigated parts of pressure-temperature-composition space. Apparent discrepancies in the experimental data for simple and multicomponent systems may be explained by considering the effect of CaO and FeO on reducing pyrope activity in the garnet solid solutions. Equilibration pressures of natural garnet-orthopyroxene assemblages may be calculated, provided temperatures are known, from a combination of the experimental data on the MgSiO3-Al2O3 system and analyses of coexisting natural phases.

Despite the presence of a compositional gap in the system, the solubility of enstatite in diopside coexisting with orthopyroxene can also be approximately treated by an ideal solution model. An empirical approach has been developed to take account of Fe2+ on the orthopyroxene-clinopyroxene miscibility gap in natural systems in order to calculate equilibration temperatures of 2-pyroxene assemblages. The model presented reproduces almost all of the available experimental data for multicomponent systems to within 60° C.


Experimental Data Complex System Mineral Resource Natural System Solution Model 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Atkins, F. B.: Pyroxenes of the Bushveld Intrusion, South Africa, J. Petrol. 10, 222–49 (1969)Google Scholar
  2. Beeson, M. H., Jackson, E. D.: Origin of Garnet-Pyroxenite Xenoliths at Salt Lake Grater, Oahu, Mineral. Soc. Amer. Spec. Pap. 3, 95–112 (1970)Google Scholar
  3. Bowen, N. L., Schairer, J. F.: The system MgO-FeO-SiO2. Am. J. Sci. 29, 151–217 (1935)Google Scholar
  4. Boyd, F. R.: Electron-probe study of Diopside inclusions from Kimberlite, Amer. J. Sci. 267A, 50–69 (1969)Google Scholar
  5. Boyd, F. R.: Garnet peridotites and the system CaSiO3-MgSiO3-Al2O3. Mineral. Soc. Amer. Spec. Pap. 3, 63–75 (1970)Google Scholar
  6. Boyd, F. R., England, J. L.: The system enstatite-pyrope. Yearbook Carnegie Inst. Wash. 63, 157–161 (1964)Google Scholar
  7. Boyd, F. R., Nixon, P. H.: Ultramafic nodules from the Thaba Putsoa Kimberlite Pipe. Yearbook Carnegie Inst. Wash. 71, 382–373 (1972)Google Scholar
  8. Brown, G. M.: Pyroxenes from the Early and Middle Stages of Fractionation of the Skaergaard Intrusion, East Greenland, Mineral. Mag. 31, 511–43 (1957)Google Scholar
  9. Brown, G. M.: Experimental studies on inversion relations in natural pigeonitic pyroxenes. Yearbook Carnegie Inst. Wash. 66, 347–353 (1967)Google Scholar
  10. Carmichael, I. S. E.: The iron-titanium oxides of salic volcanic rocks and their associated ferromagnesium silicates. Contr. Mineral. and Petrol. 14, 36–64 (1967a)Google Scholar
  11. Carmichael, I. S. E.: The mineralogy of Thingmuli, a Tertiary volcano in eastern Iceland. Am. Mineralogist 52, 1815–1841 (1967b)Google Scholar
  12. Chatterjee, N. D., Schreyer, W.: The reaction enstatitess+sillimanite⇌sapphiriness+quartz Contr. Mineral. and Petrol. 36, 49–62 (1972)Google Scholar
  13. Davis, B. T. C., Boyd, F. R.: The join Mg2Si2O6-CaMgSi2O6 at 30 kilobars pressure and its application to pyroxenes from Kimberlites, J. Geophys. Res. 71, 3567–3576 (1966)Google Scholar
  14. Evans, B. W., Moore, J. G.: Mineralogy as a function of depth in the prehistoric Makaopuhi tholeiitic lava lake, Hawaii. Contr. Mineral. and Petrol. 17, 85–115 (1968)Google Scholar
  15. Green, D. H.: Conditions of melting of basanite magma from Garnet Peridotite. Earth Planet. Sci. Lett. 17, 456–465 (1973)Google Scholar
  16. Green D. H., Hibberson, W.: Experimental duplication of conditions of precipitation of high pressure phenocrysts in a basaltic magma. Phys. Earth Planet. Int. 3, 247–254 (1970)Google Scholar
  17. Green, D. H., Ringwood, A. E.: The genesis of basaltic magmas. Contr. Mineral. and Petrol. 15, 103–190 (1967)Google Scholar
  18. Green, D. H., Ringwood, A. E.: Mineralogy of peridotitic compositions under upper mantle conditions. Phys. Earth Planet. Interiors 3, 359–371 (1970)Google Scholar
  19. Hafner, S. S., Virgo, D., Warburton, D.: Cation distributions and cooling history of clinopyroxenes from Oceanus Procellarum. Proceedings 2nd Lunar Science Conference, Vol. 1, 99–108 (1971)Google Scholar
  20. Heming, R. F., Carmichael, I. S. E.: High-temperature pumice flows from Rabaul Caldera, Papua, New Guinea, Contr. Mineral. and Petrol. 38, 1–20 (1973)Google Scholar
  21. Himmelberg, G. R., Loney, R. A.: Petrology of the Vulcan Peak Alpine-Type Peridotite, Southwestern Oregon, Geol. Soc. Am. Bull. 84, 1585–1600 (1973)Google Scholar
  22. Howie, R. A.: The geochemistry of the Charnockite series of madras, India. Trans. Roy. Soc. Edinburgh 62, 725–768 (1955)Google Scholar
  23. Kushiro, I., Shimizu, N., Nakamura, Y.: Compositions of coexisting liquid and solid phases formed upon melting of natural Garnet and Spinel lherzolites at high pressures: A preliminary report. Earth Planet. Sci. Lett. 14, 19–25 (1972)Google Scholar
  24. Lindsley, D. H., Munoz, J. L.: Subsolidus relations along the join hedenbergite-ferrosilite. Am. J. Sci. 267 A, 295–324 (1969)Google Scholar
  25. MacGregor, I. D.: The system MgO-Al2O3-SiO2; Solubility of Al2O3 in enstatite for spinel- and garnet-peridotite compositions. Am. Mineralogist (in press) (1973)Google Scholar
  26. Medaris, L. G., Jr.: High-Pressure peridotites in Southwestern Oregon. Geol. Soc. Am. Bull. 83, 41–58 (1972)Google Scholar
  27. Nafziger, R. H., Muan, A.: Equilibrium phase compositions and thermodynamic properties of olivines and pyroxenes in the system MgO-“FeO” -SiO2. Am. Mineralogist 52, 1364–1385 (1967)Google Scholar
  28. O'Hara, M. J., Schairer, J. F.: The join diopside-pyrope at atmospheric pressure, Yearbook Carnegie Inst. Wash. 62, 107–115 (1963)Google Scholar
  29. Saxena, S. K., Ghose, S.: Mg2+-Fe2+ Order-disorder and the thermodynamics of the orthopyroxene crystalline solution. Am. Mineralogist 56, 532–559 (1971)Google Scholar
  30. Skinner, B. J., Boyd, F. R.: Aluminous enstatites. Yearbook Carnegie Inst. Wash. 63, 163–165 (1964)Google Scholar
  31. Smith, D.: Stability of iron-rich pyroxene in the system CaSiO3-FeSiO3-MgSiO3. Am. Mineralogist 57, 1413–1428 (1972)Google Scholar
  32. Virgo, D., Hafner, S. S.: Fe2+, Mg order-disorder in heated orthopyroxenes. Mineral. Soc. Amer. Spec. Pap. 2, 67–81 (1969)Google Scholar
  33. Williams, R. J.: Reaction constants in the system FeO-MgO -SiO2-O2 at 1 atm between 9000 C and 1300° C: Experimental results. Am. J. Sci. 270, 334–360 (1971)Google Scholar

Copyright information

© Springer-Verlag 1973

Authors and Affiliations

  • Bernard J. Wood
    • 1
  • Shohei Banno
    • 1
  1. 1.Department of GeologyUniversity of ManchesterManchesterGreat Britain

Personalised recommendations