Advertisement

Contributions to Mineralogy and Petrology

, Volume 76, Issue 4, pp 430–439 | Cite as

An experimental study of the effect of boron on a water saturated haplogranite at 1 Kbar vapour pressure

Geological applications
  • Michel Pichavant
Article

Abstract

An experimental study of the effect of boron in the water saturated Q-Or-Ab-B2O3-H2O system has been performed at P=1 Kbar to provide experimental data and explain the role of boron in some late magmatic and early hydrothermal events. Experiments were conducted between 500° C and 800° starting from a gel, or a previously crystallized gel, and variable amounts of boron (0 to 18% B2O3) added to water. The phases obtained were: quartz, sanidine, albite, silicate liquid quenched to glass, and aqueous vapour phase. Boric acids, borates and isotropic low index materials were found in the quenched vapour phase. An aluminium silicate-like mineral, not yet fully identified, is also present.

The solidus temperature of the Q-Or-Ab composition is lowered by 60° C when 5 wt. % B2O3 is added and by more than 130° C when 17wt. % B2O3 is added. Compositions of equilibrated silicate melts and vapours were obtained between 780° C and 750° C for various B2O3 concentrations. The vapour phase is B and Si rich. It is also enriched in Na with respect to K, and in alkalis with respect to Al. Its silicate solute content is higher than in experiments with pure water. The solubility of water is increased by the addition of boron in Q-Or-Ab melts. Microprobe data show that the melts equilibrated with vapour phases become hyperaluminous and more potassic than sodic. The partition coefficient of boron is in favour of the vapour (kD=B2O3% in melt/B2O3% in vapour=0.33±0.02). The effect of the interaction between the silicate phases and the vapour is discussed. Comparison is made between the behaviour of boron and that of chlorine and fluorine. Geological applications are also provided, which concern the influence of boron on minimum melting, on muscovite stability and on the hypersolvus-subsolvus transition.

Keywords

Boron Vapour Phase B2O3 Boric Acid Silicate Solute 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Anderson GM, Burnham CW (1967) Reactions of quartz and corundum with aqueous chloride and hydroxide solutions at high temperatures and pressures. Am J Sci 265:12–27Google Scholar
  2. Behar F (1978) Analyse de CO2, H2O hydrocarbures des inclusions fluides par Chromatographie en phase gazeuse. Application aux fentes alpines et aux roches métamorphiques. Thèse de spécialité, Univ Paris VIIGoogle Scholar
  3. Burnham CW (1967) Hydrothermal fluids at the magmatic stage. In: Barnes HL (ed) Geochemistry of hydrothermal ore deposits. Holt, Rinehart, Winston, New-York, 670 pGoogle Scholar
  4. Burnham CW, Jahns RH (1962) A method for determining the solubility of water in silicate melts. Am J Sci 260:721–745Google Scholar
  5. Charles RJ, Wagstaff FE (1968) Metastable immiscibility in the B2O3-SiO2 system. J Am Ceram Soc 51:16–20Google Scholar
  6. Charoy B (1979) Definition et importance des phénomènes deutériques et des fluides associés dans les granites. Conséquences métallogéniques. Sci de la Terre, Mem, Fr, n∘ 37:364 pGoogle Scholar
  7. Chatterjee ND, Froese E (1975) A thermodynamic study of the pseudobinary join muscovite — paragonite in the system KAlSi3O8-NaAlSi3O8-Al2O3-SiO2-H2O. Am Mineral 60:985–993Google Scholar
  8. Chorlton LB (1973) The effect of boron on phase relations in the granite-water system. M Sc Thesis, McGill Univ, Montreal QuebecGoogle Scholar
  9. Chorlton LB, Martin RF (1978) The effect of boron on the granite solidus. Can Mineral 16:239–244Google Scholar
  10. Cuney M, Pagel M, Touret J (1976) L'analyse des gaz des inclusions fluides par Chromatographie en phase gazeuse. Bull Soc Fr Mineral Cristallogr 99:169–177Google Scholar
  11. Currie KL (1968) On the solubility of albite in supercritical water in the range 400° C to 600° C and 750 to 3500 bars. Am J Sci 266:321–341Google Scholar
  12. Dhamelincourt P, Beny JM, Dubessy J, Poty B (1979) Analyse d'inclusions fluides à la microsonde Mole à effet Raman. Bull Mineral Fr 102:600–610Google Scholar
  13. Eugster HP, McIver NL (1959) Boron analogues of alkali feldspars and related silicates (Abstr). Geol Soc Am Bull 76:1598–1599Google Scholar
  14. Exley CS, Stone M (1964) The granitic rocks of South West England. In: Present views on some aspects of the geology of Cornwall and Devon. Royal Geol Soc Cornwall, 150th anniv vol, pp 131–184Google Scholar
  15. Frantz JD, Eugster HP (1973) Acid-base buffers: use of Ag+AgCl in the experimental control of solutions equilibria at elevated pressures and temperatures. Am J Sci 267:268–286Google Scholar
  16. Gielisse PJ, Foster WR (1961) Research on phase equilibria between boron oxide and refractory oxides, including silicon and aluminium oxides. Int Report Ohio state Univ n∘ 8Google Scholar
  17. Gielisse PJ, Foster WR (1962) The system Al2O3-B2O3. Nature 195:69–70Google Scholar
  18. Glyuk PJ, Anfilogov VN (1973) Phase equilibria in the system granite-H2O-HF at a pressure of 1000 kg/cm2. Geochem Int 10:321–325Google Scholar
  19. Haller W, Blackburn DH, Wagstaff FE, Charles RJ (1970) Metastable immiscibility surface in the system Na2O-B2O3-SiO2. J Am Ceram Soc 53:34–39Google Scholar
  20. Hards NJ (1975) Distribution of major and trace elements between the “vapour” phase and silicate melt phase in igneous rocks. Ph D Thesis University of Manchester (unpubl)Google Scholar
  21. Hards NJ (1976) Distribution of elements between the fluid phase and the silicate melt phase of granite and nepheline syenite. In: NERC Rpt, Prog Exp Petrol 3:88–90Google Scholar
  22. Holdaway MJ (1971) Stability of andalousite and the aluminium silicate phase diagram. Am J Sci 271:97–131Google Scholar
  23. Jahns RH, Burnham CW (1958) Experimental studies of pegmatite genesis: the solubility of water in granitic melts (Abstr). Geol Soc Am Bull 69:1544–1545Google Scholar
  24. Kadik AA, Lukanin OA, Lebedev EB, Korovushkina ME (1972) The solubility of H2O and CO2 in basalt and granite melts (in Russian). Geokhimya 12:501–521Google Scholar
  25. Khitarov NI, Lebedev EB, Rengarten EV, Arsenieva RV (1959) Comparative characteristics of the solubility of water in basaltic and granitic melts (in Russian). Geokhimya pp 387–396Google Scholar
  26. Khitarov NI, Kadik AA (1973) Water and carbon dioxyde in magmatic melts and peculiarities of the melting process. Contrib Mineral Petrol 41:205–215Google Scholar
  27. Kilinc IA, Burnham CW (1972) Partitionning of chloride between a silicate melt and coexisting aqueous phase from 2 to 8 Kbars. Econ Geol 67:231–235Google Scholar
  28. Konijnendijk WL (1975) The structure of borosilicate glasses. Philips Research Reports Suppl, n∘ 1, EindhovenGoogle Scholar
  29. Koster Van Groos AF, Wyllie PJ (1968) Melting relationships in the system Na Al Si3O8-Na F-H2O to 4 kilobars pressure. J Geol 76:50–70Google Scholar
  30. Koster Van Groos AF, Wyllie PJ (1969) Melting relationships in the system Na Al Si3O8-NaCl-H2O at one kilobar pressure with petrological implications. J Geol 77:581–605Google Scholar
  31. Lagache M, Weisbrod A (1977) The system: two alkali feldspars — KCl-NaCl-H2O at moderate to high temperatures and low pressures. Contrib Mineral Petrol 62:77–101Google Scholar
  32. Lameyre J (1973) Les marques de l'eau dans les leucogranites du Massif Central français. Bull Soc Geol Fr 7, XV, n∘ 3–4:287–295Google Scholar
  33. Le Fort P (1973) Les leucogranites à tourmaline de l'Himalaya sur 1'example du granite du Manaslu (Népal central). Bull Soc Geol Fr 7, XV, n∘ 5–5:555–561Google Scholar
  34. Le Fort P (1981) Manaslu leucogranite: a collision signature of the Himalaya. A model for its genesis and emplacement. In: Barker F (ed) Granites and rhyolites. J Geophys Res (in press)Google Scholar
  35. Luth WC (1976) Granitic rocks. In: Bailey DK, Mac Donald R (eds) The evolution of the crystalline rocks, London, pp 335–417Google Scholar
  36. Luth WC, Tuttle OF (1969) The hydrous vapour phase in equilibrium with granite and granite magmas. Geol Soc Am Mem 115:513–548Google Scholar
  37. Maitrallet P (1976) Les modules à tourmaline des granitoïdes dans quelques gisements de France et d'Italie. Thèse de Spécialité, Univ Paris VIIGoogle Scholar
  38. Manning DAC (1979) An experimental study of the effect of fluorine on the crystallization of granitic melts, with application to natural fluorine-rich granitic rocks. Ph D thesis, University of Manchester (unpubl)Google Scholar
  39. Martin RF (1971) Disordered authigenic feldspars of the series K AlSi3O8-KBSi3O8 from Southern California. Am Mineral 56:281–291Google Scholar
  40. Morey GW, Ingerson E (1937) The melting of danburite, a study of liquid immiscibility in the system CaO-B2O3-SiO2. Am Mineral 22:37–47Google Scholar
  41. Nguyen Trung C, Pichavant M, Weisbrod A (1980) Contribution à l'étude expérimentale du système MgO-SiO2-HCl-H2O. In: Besson M (ed) Facteurs contrôlant les minéralisations sulfurées de Nickel. Mém BRGM, Fr n∘ 97:263–274Google Scholar
  42. Oxtoby S, Hamilton DL (1978) Calculation of the solubility of water in granitic melts. In: NERC Rpt. Prog Exp Petrol 4:33–36Google Scholar
  43. Petö P (1976) An experimental investigation of melting relations involving muscovite and paragonite in the silica-saturated portion of the system K2O-Na2O-Al2O3-SiO2-H2O to 15 Kb pressure. In: NERC Rpt. Prog Exp Petrol 3:41–15Google Scholar
  44. Pichavant M (1978) Etude du système SiO2-B2O3 à P=1 Kbar. Diagramme de phases et interprétation thermodynamique. Bull Mineral Fr 101:498–502Google Scholar
  45. Pichavant M (1979) Etude expérimentale à haute température et 1 Kbar du rôle du bore dans quelques systèmes silicatés. Intérêt pétrologique et métallogénique. Thèse de Spécialité, INPL NancyGoogle Scholar
  46. Pichavant M (1981) Application des données expérimentales aux conditions de genèse et de cristallisation des leucogranites à tourmaline. CR Acad Sci Paris 292, Série II:851–854Google Scholar
  47. Piwiskii AJ, Martin RF (1970) An experimental study of equilibrium with granitic rocks at 10 kilobars. Contrib Mineral Petrol 29:1–10Google Scholar
  48. Richardson SW, Gilbert MC, Bell PM (1969) Experimental determination of kyanite-andalousite and andalousite-sillimanite equilibria: the aluminium silicate triple point. Am J Sci 267:259–272Google Scholar
  49. Rockett TJ, Foster WR (1965) Phase relations in the system SiO2-B2O3. J Am Ceram Soc 98:75–80Google Scholar
  50. Sillitoe RH, Sawkins FJ (1971) Geologic mineralogic and fluid inclusion studies relating to the origin of copper — bearing tourmaline breccia pipes, Chile. Econ Geol 66:1028–1041Google Scholar
  51. Thompson AB (1974) Calculation of muscovite — paragonite — alkali feldspar phase relations. Contrib Mineral Petrol 44:173–194Google Scholar
  52. Thompson JB Jr, Waldbaum DR (1969) Mixing properties of sanidine solid solutions. III, Calculations based on two-phase data. Am Mineral 54:811–838Google Scholar
  53. Tuttle OF, Bowen NL (1958) Origin of granite in the light of experimental studies in the system Na Al Si3O8-K Al Si3O8-SiO2-H2O. Geol Soc Am Mem 74: 153 pGoogle Scholar
  54. Wyllie PJ, Tuttle OF (1961) Experimental investigation of silicate systems containing two volatiles components: II — The effects of NH3 and HF in addition to H2O on the temperatures of albite and granite. Am J Sci 259:128–143Google Scholar

Copyright information

© Springer-Verlag 1981

Authors and Affiliations

  • Michel Pichavant
    • 1
  1. 1.Centre de Recherches Pétrographiques et Géochimiques, C.O. n∘ 1Vandoeuvre-les-NancyFrance

Personalised recommendations